Example #1
0
def test_binomial_deviance():
    # Check binomial deviance loss.
    # Check against alternative definitions in ESLII.
    bd = BinomialDeviance(2)

    # pred has the same BD for y in {0, 1}
    assert (bd(np.array([0.0]), np.array([0.0])) == bd(np.array([1.0]),
                                                       np.array([0.0])))

    assert_almost_equal(
        bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0)
    assert_almost_equal(
        bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0)

    # check if same results as alternative definition of deviance (from ESLII)
    alt_dev = lambda y, pred: np.mean(
        np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred))
    test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])),
                 (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])),
                 (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0,
                                                       -100.0])),
                 (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0,
                                                       -100.0]))]

    for datum in test_data:
        assert_almost_equal(bd(*datum), alt_dev(*datum))

    # check the gradient against the
    alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred))
    for datum in test_data:
        assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum))
def test_binomial_deviance():
    # Check binomial deviance loss.
    # Check against alternative definitions in ESLII.
    bd = BinomialDeviance(2)

    # pred has the same BD for y in {0, 1}
    assert_equal(bd(np.array([0.0]), np.array([0.0])),
                 bd(np.array([1.0]), np.array([0.0])))

    assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]),
                           np.array([100.0, 100.0, 100.0])),
                        0.0)
    assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]),
                           np.array([100.0, -100.0, -100.0])), 0)

    # check if same results as alternative definition of deviance (from ESLII)
    alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 *
                                                   (2.0 * y - 1) * pred))
    test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])),
                 (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])),
                 (np.array([0.0, 0.0, 0.0]),
                  np.array([-100.0, -100.0, -100.0])),
                 (np.array([1.0, 1.0, 1.0]),
                  np.array([-100.0, -100.0, -100.0]))]

    for datum in test_data:
        assert_almost_equal(bd(*datum), alt_dev(*datum))

    # check the gradient against the
    alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred))
    for datum in test_data:
        assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum))
Example #3
0
def test_init_raw_predictions_shapes():
    # Make sure get_init_raw_predictions returns float64 arrays with shape
    # (n_samples, K) where K is 1 for binary classification and regression, and
    # K = n_classes for multiclass classification
    rng = np.random.RandomState(0)

    n_samples = 100
    X = rng.normal(size=(n_samples, 5))
    y = rng.normal(size=n_samples)
    for loss in (LeastSquaresError(n_classes=1),
                 LeastAbsoluteError(n_classes=1),
                 QuantileLossFunction(n_classes=1),
                 HuberLossFunction(n_classes=1)):
        init_estimator = loss.init_estimator().fit(X, y)
        raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
        assert raw_predictions.shape == (n_samples, 1)
        assert raw_predictions.dtype == np.float64

    y = rng.randint(0, 2, size=n_samples)
    for loss in (BinomialDeviance(n_classes=2), ExponentialLoss(n_classes=2)):
        init_estimator = loss.init_estimator().fit(X, y)
        raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
        assert raw_predictions.shape == (n_samples, 1)
        assert raw_predictions.dtype == np.float64

    for n_classes in range(3, 5):
        y = rng.randint(0, n_classes, size=n_samples)
        loss = MultinomialDeviance(n_classes=n_classes)
        init_estimator = loss.init_estimator().fit(X, y)
        raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
        assert raw_predictions.shape == (n_samples, n_classes)
        assert raw_predictions.dtype == np.float64
def test_binomial_deviance():
    # Check binomial deviance loss.
    # Check against alternative definitions in ESLII.
    bd = BinomialDeviance(2)

    # pred has the same BD for y in {0, 1}
    assert bd(np.array([0.0]), np.array([0.0])) == bd(np.array([1.0]),
                                                      np.array([0.0]))

    assert bd(np.array([1.0, 1, 1]), np.array([100.0, 100, 100])) == approx(0)
    assert bd(np.array([1.0, 0, 0]), np.array([100.0, -100,
                                               -100])) == approx(0)

    # check if same results as alternative definition of deviance, from ESLII
    # Eq. (10.18): -loglike = log(1 + exp(-2*z*f))
    # Note:
    # - We use y = {0, 1}, ESL (10.18) uses z in {-1, 1}, hence y=2*y-1
    # - ESL 2*f = pred_raw, hence the factor 2 of ESL disappears.
    # - Deviance = -2*loglike + .., hence a factor of 2 in front.
    def alt_dev(y, raw_pred):
        z = 2 * y - 1
        return 2 * np.mean(np.log(1 + np.exp(-z * raw_pred)))

    test_data = product(
        (np.array([0.0, 0, 0]), np.array([1.0, 1, 1])),
        (np.array([-5.0, -5, -5]), np.array([3.0, 3, 3])),
    )

    for datum in test_data:
        assert bd(*datum) == approx(alt_dev(*datum))

    # check the negative gradient against altenative formula from ESLII
    # Note: negative_gradient is half the negative gradient.
    def alt_ng(y, raw_pred):
        z = 2 * y - 1
        return z / (1 + np.exp(z * raw_pred))

    for datum in test_data:
        assert bd.negative_gradient(*datum) == approx(alt_ng(*datum))
Example #5
0
def test_init_raw_predictions_values():
    # Make sure the get_init_raw_predictions() returns the expected values for
    # each loss.
    rng = np.random.RandomState(0)

    n_samples = 100
    X = rng.normal(size=(n_samples, 5))
    y = rng.normal(size=n_samples)

    # Least squares loss
    loss = LeastSquaresError(n_classes=1)
    init_estimator = loss.init_estimator().fit(X, y)
    raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
    # Make sure baseline prediction is the mean of all targets
    assert_almost_equal(raw_predictions, y.mean())

    # Least absolute and huber loss
    for Loss in (LeastAbsoluteError, HuberLossFunction):
        loss = Loss(n_classes=1)
        init_estimator = loss.init_estimator().fit(X, y)
        raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
        # Make sure baseline prediction is the median of all targets
        assert_almost_equal(raw_predictions, np.median(y))

    # Quantile loss
    for alpha in (.1, .5, .9):
        loss = QuantileLossFunction(n_classes=1, alpha=alpha)
        init_estimator = loss.init_estimator().fit(X, y)
        raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
        # Make sure baseline prediction is the alpha-quantile of all targets
        assert_almost_equal(raw_predictions, np.percentile(y, alpha * 100))

    y = rng.randint(0, 2, size=n_samples)

    # Binomial deviance
    loss = BinomialDeviance(n_classes=2)
    init_estimator = loss.init_estimator().fit(X, y)
    # Make sure baseline prediction is equal to link_function(p), where p
    # is the proba of the positive class. We want predict_proba() to return p,
    # and by definition
    # p = inverse_link_function(raw_prediction) = sigmoid(raw_prediction)
    # So we want raw_prediction = link_function(p) = log(p / (1 - p))
    raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
    p = y.mean()
    assert_almost_equal(raw_predictions, np.log(p / (1 - p)))

    # Exponential loss
    loss = ExponentialLoss(n_classes=2)
    init_estimator = loss.init_estimator().fit(X, y)
    raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
    p = y.mean()
    assert_almost_equal(raw_predictions, .5 * np.log(p / (1 - p)))

    # Multinomial deviance loss
    for n_classes in range(3, 5):
        y = rng.randint(0, n_classes, size=n_samples)
        loss = MultinomialDeviance(n_classes=n_classes)
        init_estimator = loss.init_estimator().fit(X, y)
        raw_predictions = loss.get_init_raw_predictions(y, init_estimator)
        for k in range(n_classes):
            p = (y == k).mean()
        assert_almost_equal(raw_predictions[:, k], np.log(p))