Example #1
0
class AdaBoostRegressorImpl():
    def __init__(self,
                 base_estimator=None,
                 n_estimators=50,
                 learning_rate=1.0,
                 loss='linear',
                 random_state=None):
        self._hyperparams = {
            'base_estimator': base_estimator,
            'n_estimators': n_estimators,
            'learning_rate': learning_rate,
            'loss': loss,
            'random_state': random_state
        }
        self._wrapped_model = Op(**self._hyperparams)

    def fit(self, X, y=None):
        if (y is not None):
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)
Example #2
0
class AdaBoostRegressorImpl():
    def __init__(self,
                 base_estimator=None,
                 n_estimators=50,
                 learning_rate=1.0,
                 loss='linear',
                 random_state=None):
        if isinstance(base_estimator, lale.operators.Operator):
            if isinstance(base_estimator, lale.operators.IndividualOp):
                base_estimator = base_estimator._impl_instance()._wrapped_model
            else:
                raise ValueError(
                    "If base_estimator is a Lale operator, it needs to be an individual operator. "
                )
        self._hyperparams = {
            'base_estimator': base_estimator,
            'n_estimators': n_estimators,
            'learning_rate': learning_rate,
            'loss': loss,
            'random_state': random_state
        }
        self._wrapped_model = SKLModel(**self._hyperparams)

    def fit(self, X, y=None):
        if (y is not None):
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)
Example #3
0
from sklearn.ensemble.weight_boosting import AdaBoostRegressor
from sklearn.model_selection._split import train_test_split

tl = TrendLine(data_type='train')
data_df = tl.get()

train_set, test_set = train_test_split(data_df,
                                       test_size=0.2,
                                       random_state=np.random.randint(1, 1000))

y_train = train_set['time_to_failure']
x_train_seg = train_set['segment_id']
x_train = train_set.drop(['time_to_failure', 'segment_id'], axis=1)

y_test = test_set['time_to_failure']
x_test_seg = test_set['segment_id']
x_test = test_set.drop(['time_to_failure', 'segment_id'], axis=1)

adbReg = AdaBoostRegressor(n_estimators=50,
                           learning_rate=1.0,
                           loss='linear',
                           random_state=42)

adbReg.fit(x_train, y_train)

y_pred = adbReg.predict(x_test)

# y_pred = x_train.mean(axis=1)

print('MAE Score for acerage ', mean_absolute_error(y_test, y_pred))