Example #1
0
def gpc_classifier(params):
    clf = GaussianProcessClassifier()
    clf.set_params(**params)
    return clf
Example #2
0
class GaussianProcess(Classifier):
    r"""Implementation of gaussian process classifier.
    
    Date:
        2020

    Author:
        Luka Pečnik

    License:
        MIT
    
    Reference:
        Rasmussen, Carl Edward, and Hannes Nickisch. "Gaussian processes for machine learning (GPML) toolbox." The Journal of Machine Learning Research 11 (2010): 3011-3015.
    
    Documentation:
        https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html

    See Also:
        * :class:`niaaml.classifiers.Classifier`
    """
    Name = 'Gaussian Process Classifier'

    def __init__(self, **kwargs):
        r"""Initialize GaussianProcess instance.
        """
        warnings.filterwarnings(action='ignore',
                                category=ChangedBehaviorWarning)
        warnings.filterwarnings(action='ignore', category=ConvergenceWarning)
        warnings.filterwarnings(action='ignore',
                                category=DataConversionWarning)
        warnings.filterwarnings(action='ignore',
                                category=DataDimensionalityWarning)
        warnings.filterwarnings(action='ignore', category=EfficiencyWarning)
        warnings.filterwarnings(action='ignore', category=FitFailedWarning)
        warnings.filterwarnings(action='ignore', category=NonBLASDotWarning)
        warnings.filterwarnings(action='ignore',
                                category=UndefinedMetricWarning)

        self._params = dict(
            max_iter_predict=ParameterDefinition(MinMax(50, 200), np.uint),
            warm_start=ParameterDefinition([True, False]),
            multi_class=ParameterDefinition(['one_vs_rest', 'one_vs_one']))
        self.__gaussian_process = GPC()

    def set_parameters(self, **kwargs):
        r"""Set the parameters/arguments of the algorithm.
        """
        self.__gaussian_process.set_params(**kwargs)

    def fit(self, x, y, **kwargs):
        r"""Fit GaussianProcess.

        Arguments:
            x (pandas.core.frame.DataFrame): n samples to classify.
            y (pandas.core.series.Series): n classes of the samples in the x array.

        Returns:
            None
        """
        self.__gaussian_process.fit(x, y)

    def predict(self, x, **kwargs):
        r"""Predict class for each sample (row) in x.

        Arguments:
            x (pandas.core.frame.DataFrame): n samples to classify.

        Returns:
            pandas.core.series.Series: n predicted classes.
        """
        return self.__gaussian_process.predict(x)

    def to_string(self):
        r"""User friendly representation of the object.

        Returns:
            str: User friendly representation of the object.
        """
        return Classifier.to_string(self).format(
            name=self.Name,
            args=self._parameters_to_string(
                self.__gaussian_process.get_params()))