Example #1
0
def trainModel ( training_sequences, num_states, num_comp, covariance_type ):
    """
    @return (GMMHMM): A GMM HMM model with @param num_states hidden states,
        @param num_comp GMM components per hidden state, and a covariance
        matrix of type @param covariance_type (full or diag), trained on
        @param training_sequences.
    """
    model = GMMHMM(num_states, n_mix=num_comp, covariance_type=covariance_type)
    return model.fit(training_sequences)
    def __init__(self, n_components=1, n_mix=1, startprob=None, transmat=None,
                 startprob_prior=None, transmat_prior=None,
                 algorithm="viterbi", gmms=None, covariance_type='diag',
                 covars_prior=1e-2, random_state=None, n_iter=10, thresh=1e-2,
                 params="",
                 init_params=""):

        GMMHMM.__init__(self, n_components, n_mix, startprob, transmat,
                 startprob_prior, transmat_prior,
                 algorithm, gmms, covariance_type,
                 covars_prior, random_state, n_iter, thresh,
                 params, init_params)
Example #3
0
    def fit(self, reference, features):
        """Train HMM segmentation

        The resulting HMM will contain one state per labels in training set.

        Parameters
        ----------
        reference : `Annotation` generator
            Generates annotations whose labels will be HMM states
        features : `Feature` generator
            Generates features synchronized with `reference`
        """

        # gather training data
        reference = list(reference)
        features = list(features)

        # gather target list
        self.targets = self._get_targets(reference)

        # train each state
        for target in self.targets:
            logging.info('training {%s} GMM' % str(target))
            self.gmm[target] = self._get_gmm(reference, features, target)

        # train HMM
        logging.info('training %d-states HMM' % len(self.targets))
        self.hmm = GMMHMM(
            n_components=len(self.targets),
            gmms=[self.gmm[target] for target in self.targets],
            init_params='st', params='st'
        )
        self.hmm.fit([f.data for f in features])

        return self
Example #4
0
def train(trainingData):
   # train one GMM for each state
   mixes = list()
   for state in xrange(1,6):
      # select data with current state label
      d = trainingData[trainingData.rating==state]
      # prepare data shape
      d = np.array(zip(*[d[f].values for f in pcas]))
      # init GMM
      gmm = GMM(num_mixc,cov_type)
      # train
      gmm.fit(d)
      mixes.append(gmm)

   # train HMM with init, trans, GMMs=mixes
   init,trans = hmm.hmmMlParams(trainingData,[1,2,3,4,5])
   model = GMMHMM(n_components=5,init_params='',gmms=mixes)
   model.transmat_ = trans
   model.startprob_ = init

   return model   
Example #5
0
    def __init__(self,
                 n_components=1,
                 n_mix=1,
                 startprob=None,
                 transmat=None,
                 startprob_prior=None,
                 transmat_prior=None,
                 algorithm="viterbi",
                 gmms=None,
                 covariance_type='diag',
                 covars_prior=1e-2,
                 random_state=None,
                 n_iter=10,
                 thresh=1e-2,
                 params="",
                 init_params=""):

        GMMHMM.__init__(self, n_components, n_mix, startprob, transmat,
                        startprob_prior, transmat_prior, algorithm, gmms,
                        covariance_type, covars_prior, random_state, n_iter,
                        thresh, params, init_params)
class NaiveHMM(object):
	def __init__(self, num_states, hmm_type=0, n_mix=3, n_iter=100, n_components=3):
		if hmm_type == 0:
			self._hmm = GaussianHMM(n_mix, n_iter=n_iter)
		elif hmm_type == 1: # WARNING: VERY VERY VERY SLOW
			self._hmm = GMMHMM(n_mix=n_mix, n_components=n_components, n_iter=n_iter)

	def fit(self, data):
		"""
		@param data DataFrame object containing T,X,Y,Z values.
		"""
		train = np.column_stack([data.X.tolist(), data.Y.tolist(), data.Z.tolist()])
		self._hmm.fit([train])

	def score(self, test):
		"""
		@param test DataFrame object containing T,X,Y,Z values.
		"""
		t = np.column_stack([test.X.tolist(), test.Y.tolist(), test.Z.tolist()])
		return self._hmm.score(t)

	def get_hmm(self):
		return self._hmm
Example #7
0
class SegmentationHMM(object):

    """HMM-based segmentation with Viterbi decoding

    Parameters
    ----------
    n_components : int
        Number of gaussians per HMM state (default is 1).
    covariance_type : {'diag', 'full'}
        Type of gaussian covariance matrices
    sampling : int, optional
        Reduce the number of samples used for the initialization steps to
        `sampling` samples per component. A few hundreds samples per component
        should be a reasonable rule of thumb.
        The final estimation steps always use the whole sample set.
    min_duration : float, optional
        Filter out segments shorter than `min_duration` seconds
    n_jobs : int
        Number of parallel jobs for GMM estimation
        (default is one core)

    """

    def __init__(
        self, n_components=1, covariance_type='diag', sampling=0,
        min_duration=None, n_jobs=1
    ):

        super(SegmentationHMM, self).__init__()
        self.n_components = n_components
        self.covariance_type = covariance_type
        self.sampling = sampling
        self.n_jobs = n_jobs
        self.min_duration = min_duration
        self.gmm = {}

    def _get_targets(self, reference):
        """Get list of targets from training data

        Parameters
        ----------
        reference : `Annotation` iterable

        Returns
        -------
        targets : list
            Sorted list of 'known' targets

        """
        # empty target set
        targets = set()

        for annotation in reference:
            labels = [
                L for L in annotation.labels()
                if not isinstance(L, Unknown)
            ]
            targets.update(labels)

        return sorted(targets)

    def _get_gmm(self, reference, features, target):

        # gather target data
        data = np.vstack([
            f.crop(r.label_coverage(target))  # use target regions only
            for r, f in itertools.izip(reference, features)
        ])

        lbg = LBG(
            n_components=self.n_components,
            covariance_type=self.covariance_type,
            sampling=self.sampling,
            n_iter=10,
            disturb=0.05
        )

        gmm = lbg.apply(data)

        return gmm

    def fit(self, reference, features):
        """Train HMM segmentation

        The resulting HMM will contain one state per labels in training set.

        Parameters
        ----------
        reference : `Annotation` generator
            Generates annotations whose labels will be HMM states
        features : `Feature` generator
            Generates features synchronized with `reference`
        """

        # gather training data
        reference = list(reference)
        features = list(features)

        # gather target list
        self.targets = self._get_targets(reference)

        # train each state
        for target in self.targets:
            logging.info('training {%s} GMM' % str(target))
            self.gmm[target] = self._get_gmm(reference, features, target)

        # train HMM
        logging.info('training %d-states HMM' % len(self.targets))
        self.hmm = GMMHMM(
            n_components=len(self.targets),
            gmms=[self.gmm[target] for target in self.targets],
            init_params='st', params='st'
        )
        self.hmm.fit([f.data for f in features])

        return self

    def apply(self, features):
        """
        Parameters
        ----------
        features : SlidingWindowFeatures
        """

        # predict state sequences
        sequence = self.hmm.predict(features.data)

        # median filtering to get rid of short segments
        if self.min_duration:

            if len(self.targets) > 2:
                raise NotImplementedError(
                    'min_duration is not supported with more than 2 states.'
                )

            dummy = Segment(0, self.min_duration)
            _, n = features.sliding_window.segmentToRange(dummy)
            sequence = median_filter(sequence, size=2*n+1)

        # start initial segment
        start = 0
        label = self.targets[sequence[0]]

        segmentation = Annotation()

        for i, d in enumerate(np.diff(sequence)):

            if d == 0:
                continue

            # end of current segment
            end = i
            segment = features.sliding_window.rangeToSegment(start, end-start)
            segmentation[segment, '_'] = label

            # start of a new segment
            label = self.targets[sequence[i+1]]
            start = end

        segment = Segment(segment.end, features.getExtent().end)
        segmentation[segment, '_'] = label

        return segmentation
 GMMs = []
 for state_index in range(n_states):
     g = GMM( n_components=m_components,
                covariance_type=covariance_type,
                #n_iter=0, # this initialises the GMMs without optimising them through EM; this is done later in the GMM HMM model
               ) # n_iter = 5(...) better??
     g.fit(observations_per_state[state_index])
     GMMs.append(g)
 # Initialise and train new GMM HMM model
 print "\tTraining GMM HMM model..."
 # Implements (6.), (7.)
 gmm_model = GMMHMM( n_components=n_states,
                     n_mix=m_components,
                     startprob=previous_model.startprob_,
                     transmat=previous_model.transmat_,
                     gmms=GMMs,
                     covariance_type=covariance_type,
                     n_iter=num_EM_iterations,
                     init_params='' # initialisation through previous model and GMMs!
                    )
 gmm_model.fit(training_sequences)
 # save base model
 print "\tSaving model to file..."
 saveModel(gmm_model, 'gmm_model_%scomponents' % m_components, observation_sequences[0].getFeatureNames())
 # tag training data using new model
 print "\tTagging training data using base model..."
 likelihood_of_training_data, observations_per_state = tagTrainingData( gmm_model, 
                                                                        training_sequences, 
                                                                        list(observation_sequences), # pass a copy 
                                                                        save='gmm_model_%scomponents/tagged_training_data' % m_components, 
                                                                        filenames=filenames )
Example #9
0
import csv
from hmmlearn import hmm
import os
import glob
import pandas as pd
from sklearn.hmm import GMMHMM
from sklearn.externals import joblib
def apply_pca(dataset):
    pcaModel = joblib.load('./pca2.pkl')
    return pcaModel.transform(dataset)

gesture = 'Sorry'
os.chdir('./'+gesture)
file_list = [i for i in glob.glob('*.csv')]
os.chdir('../')
print file_list
lengths = []
X = []
for file_name in file_list:
    print file_name
    dataset = pd.read_csv(gesture+'/'+file_name)
    dataset =  apply_pca(dataset.values)
    lengths.append(len(dataset))
    X.append(dataset)

# print X
model  = GMMHMM(n_components=7,n_mix=128,covariance_type="diag")
model.fit(X)
joblib.dump(model,'./HMMs/'+gesture+'.pkl')
	def __init__(self, num_states, hmm_type=0, n_mix=3, n_iter=100, n_components=3):
		if hmm_type == 0:
			self._hmm = GaussianHMM(n_mix, n_iter=n_iter)
		elif hmm_type == 1: # WARNING: VERY VERY VERY SLOW
			self._hmm = GMMHMM(n_mix=n_mix, n_components=n_components, n_iter=n_iter)