Example #1
0
    def decision_function(self, X):
        """Predict confidence scores for samples

        The confidence score for a sample is the signed distance of that
        sample to the hyperplane.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = (n_samples, n_features)
            Samples.

        Returns
        -------
        array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
            Confidence scores per (sample, class) combination. In the binary
            case, confidence score for self.classes_[1] where >0 means this
            class would be predicted.
        """
        # handle regression (least-squared loss)
        if not self.is_classif:
            return LinearModel.decision_function(self, X)

        X = atleast2d_or_csr(X)
        n_features = self.coef_.shape[1]
        if X.shape[1] != n_features:
            raise ValueError("X has %d features per sample; expecting %d"
                             % (X.shape[1], n_features))

        scores = safe_sparse_dot(X, self.coef_.T,
                                 dense_output=True) + self.intercept_
        return scores.ravel() if scores.shape[1] == 1 else scores
Example #2
0
    def decision_function(self, X):
        """Predict confidence scores for samples

        The confidence score for a sample is the signed distance of that
        sample to the hyperplane.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = (n_samples, n_features)
            Samples.

        Returns
        -------
        array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes)
            Confidence scores per (sample, class) combination. In the binary
            case, confidence score for self.classes_[1] where >0 means this
            class would be predicted.
        """
        # handle regression (least-squared loss)
        if not self.is_classif:
            return LinearModel.decision_function(self, X)

        X = atleast2d_or_csr(X)
        n_features = self.coef_.shape[1]
        if X.shape[1] != n_features:
            raise ValueError("X has %d features per sample; expecting %d"
                             % (X.shape[1], n_features))

        scores = safe_sparse_dot(X, self.coef_.T,
                                 dense_output=True) + self.intercept_
        return scores.ravel() if scores.shape[1] == 1 else scores