Example #1
0
 def __init__(self,
              base_estimator=None,
              min_samples=None,
              residual_threshold=None,
              is_data_valid=None,
              is_model_valid=None,
              max_trials=100,
              max_skips='inf',
              stop_n_inliers='inf',
              stop_score='inf',
              stop_probability=0.99,
              loss='absolute_loss',
              random_state=None):
     self._hyperparams = {
         'base_estimator': base_estimator,
         'min_samples': min_samples,
         'residual_threshold': residual_threshold,
         'is_data_valid': is_data_valid,
         'is_model_valid': is_model_valid,
         'max_trials': max_trials,
         'max_skips': max_skips,
         'stop_n_inliers': stop_n_inliers,
         'stop_score': stop_score,
         'stop_probability': stop_probability,
         'loss': loss,
         'random_state': random_state
     }
     self._wrapped_model = Op(**self._hyperparams)
Example #2
0
 def fit(self, X, y=None):
     self._sklearn_model = SKLModel(**self._hyperparams)
     if (y is not None):
         self._sklearn_model.fit(X, y)
     else:
         self._sklearn_model.fit(X)
     return self
Example #3
0
class RANSACRegressorImpl():
    def __init__(self,
                 base_estimator=None,
                 min_samples=None,
                 residual_threshold=None,
                 is_data_valid=None,
                 is_model_valid=None,
                 max_trials=100,
                 max_skips='inf',
                 stop_n_inliers='inf',
                 stop_score='inf',
                 stop_probability=0.99,
                 loss='absolute_loss',
                 random_state=None):
        self._hyperparams = {
            'base_estimator': base_estimator,
            'min_samples': min_samples,
            'residual_threshold': residual_threshold,
            'is_data_valid': is_data_valid,
            'is_model_valid': is_model_valid,
            'max_trials': max_trials,
            'max_skips': max_skips,
            'stop_n_inliers': stop_n_inliers,
            'stop_score': stop_score,
            'stop_probability': stop_probability,
            'loss': loss,
            'random_state': random_state
        }
        self._wrapped_model = Op(**self._hyperparams)

    def fit(self, X, y=None):
        if (y is not None):
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)
Example #4
0
classifiers = [
    RandomForestRegressor(n_estimators=200, n_jobs=5,
                          random_state=randomstate),
    ExtraTreesRegressor(n_estimators=200, n_jobs=5, random_state=randomstate),
    # GradientBoostingRegressor(random_state=randomstate),    # learning_rate is a hyper-parameter in the range (0.0, 1.0]
    # HistGradientBoostingClassifier(random_state=randomstate),    # learning_rate is a hyper-parameter in the range (0.0, 1.0]
    AdaBoostRegressor(n_estimators=200, random_state=randomstate),
    GaussianProcessRegressor(normalize_y=True),
    ARDRegression(),
    # HuberRegressor(),   # epsilon:  greater than 1.0, default 1.35
    LinearRegression(n_jobs=5),
    PassiveAggressiveRegressor(
        random_state=randomstate),  # C: 0.25, 0.5, 1, 5, 10
    SGDRegressor(random_state=randomstate),
    TheilSenRegressor(n_jobs=5, random_state=randomstate),
    RANSACRegressor(random_state=randomstate),
    KNeighborsRegressor(
        weights='distance'),  # n_neighbors: 3, 6, 9, 12, 15, 20
    RadiusNeighborsRegressor(weights='distance'),  # radius: 1, 2, 5, 10, 15
    MLPRegressor(max_iter=10000000, random_state=randomstate),
    DecisionTreeRegressor(
        random_state=randomstate),  # max_depth = 2, 3, 4, 6, 8
    ExtraTreeRegressor(random_state=randomstate),  # max_depth = 2, 3, 4, 6, 8
    SVR()  # C: 0.25, 0.5, 1, 5, 10
]

selectors = [
    reliefF.reliefF,
    fisher_score.fisher_score,
    # chi_square.chi_square,
    JMI.jmi,
Example #5
0
			'NuSVR':NuSVR(),
			'Nystroem':Nystroem(),
			'OAS':OAS(),
			'OneClassSVM':OneClassSVM(),
			'OrthogonalMatchingPursuit':OrthogonalMatchingPursuit(),
			'OrthogonalMatchingPursuitCV':OrthogonalMatchingPursuitCV(),
			'PCA':PCA(),
			'PLSCanonical':PLSCanonical(),
			'PLSRegression':PLSRegression(),
			'PLSSVD':PLSSVD(),
			'PassiveAggressiveClassifier':PassiveAggressiveClassifier(),
			'PassiveAggressiveRegressor':PassiveAggressiveRegressor(),
			'Perceptron':Perceptron(),
			'ProjectedGradientNMF':ProjectedGradientNMF(),
			'QuadraticDiscriminantAnalysis':QuadraticDiscriminantAnalysis(),
			'RANSACRegressor':RANSACRegressor(),
			'RBFSampler':RBFSampler(),
			'RadiusNeighborsClassifier':RadiusNeighborsClassifier(),
			'RadiusNeighborsRegressor':RadiusNeighborsRegressor(),
			'RandomForestClassifier':RandomForestClassifier(),
			'RandomForestRegressor':RandomForestRegressor(),
			'RandomizedLasso':RandomizedLasso(),
			'RandomizedLogisticRegression':RandomizedLogisticRegression(),
			'RandomizedPCA':RandomizedPCA(),
			'Ridge':Ridge(),
			'RidgeCV':RidgeCV(),
			'RidgeClassifier':RidgeClassifier(),
			'RidgeClassifierCV':RidgeClassifierCV(),
			'RobustScaler':RobustScaler(),
			'SGDClassifier':SGDClassifier(),
			'SGDRegressor':SGDRegressor(),