Example #1
0
def _ompcv(*,
           train,
           test,
           x_predict=None,
           metrics,
           copy=True,
           fit_intercept=True,
           normalize=True,
           max_iter=None,
           cv=None,
           n_jobs=None,
           verbose=False):
    """For more info visit : 
        https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html#sklearn.linear_model.OrthogonalMatchingPursuitCV
    """

    model = OrthogonalMatchingPursuitCV(fit_intercept=fit_intercept,
                                        copy=copy,
                                        normalize=normalize,
                                        max_iter=max_iter,
                                        cv=cv,
                                        n_jobs=n_jobs,
                                        verbose=verbose)
    model.fit(train[0], train[1])
    model_name = 'OrthogonalMatchingPursuitCV'
    y_hat = model.predict(test[0])

    if metrics == 'mse':
        accuracy = _mse(test[1], y_hat)
    if metrics == 'rmse':
        accuracy = _rmse(test[1], y_hat)
    if metrics == 'mae':
        accuracy = _mae(test[1], y_hat)

    if x_predict is None:
        return (model_name, accuracy, None)

    y_predict = model.predict(x_predict)
    return (model_name, accuracy, y_predict)
class _OrthogonalMatchingPursuitCVImpl:
    def __init__(self, **hyperparams):
        self._hyperparams = hyperparams
        self._wrapped_model = Op(**self._hyperparams)

    def fit(self, X, y=None):
        if y is not None:
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)
Example #3
0
    def predict(self):
        """
         trains the scikit-learn  python machine learning algorithm library function
         https://scikit-learn.org

         then passes the trained algorithm the features set and returns the
         predicted y test values form, the function

         then compares the y_test values from scikit-learn predicted to
         y_test values passed in

         then returns the accuracy
         """

        n_nonzero_coefs = 17
        algorithm = OrthogonalMatchingPursuitCV()
        algorithm.fit(self.X_train, self.y_train)
        y_pred = list(algorithm.predict(self.X_test))
        self.acc = OneHotPredictor.get_accuracy(y_pred, self.y_test)
        return self.acc
Example #4
0
    tss, rss, ess, r2 = xss(Y, omp.predict(X))
    print "TSS(Total Sum of Squares): ", tss
    print "RSS(Residual Sum of Squares): ", rss
    print "ESS(Explained Sum of Squares): ", ess
    print "R^2: ", r2

    print "\n**********测试OrthogonalMatchingPursuitCV类**********"
    ompCV = OrthogonalMatchingPursuitCV(cv=5)
    # 拟合训练集
    ompCV.fit(train_X, train_Y.values.ravel())
    # 打印最好的n_nonzero_coefs值
    print "最好的n_nonzero_coefs值: ", ompCV.n_nonzero_coefs_
    # 打印模型的系数
    print "系数:", ompCV.coef_
    print "截距:", ompCV.intercept_
    print '训练集R2: ', r2_score(train_Y, ompCV.predict(train_X))

    # 对于线性回归模型, 一般使用均方误差(Mean Squared Error,MSE)或者
    # 均方根误差(Root Mean Squared Error,RMSE)在测试集上的表现来评该价模型的好坏.
    test_Y_pred = ompCV.predict(test_X)
    print "测试集得分:", ompCV.score(test_X, test_Y)
    print "测试集MSE:", mean_squared_error(test_Y, test_Y_pred)
    print "测试集RMSE:", np.sqrt(mean_squared_error(test_Y, test_Y_pred))
    print "测试集R2:", r2_score(test_Y, test_Y_pred)

    tss, rss, ess, r2 = xss(Y, ompCV.predict(X))
    print "TSS(Total Sum of Squares): ", tss
    print "RSS(Residual Sum of Squares): ", rss
    print "ESS(Explained Sum of Squares): ", ess
    print "R^2: ", r2