samples = stintX.shape[0] alphas = [l * samples / 2 for l in lambdas] print(lambdas) print(samples) print(alphas) clfAdjusted = RidgeCV(alphas=alphas, cv=5, fit_intercept=True, normalize=False) clfRaw = RidgeCV(alphas=alphas, cv=5, fit_intercept=True, normalize=False) weights = [secondsPlayedMap[p] / 60 / (82 * 3) for p in filteredPlayers] weights = np.array(weights) weights = np.concatenate((weights, weights)) weights = weights - weights.mean() print(weights) clfAdjusted.coef_ = weights clfRaw.coef_ = weights sample_weights = stints["possessions"].values # print(clfAdjusted.coef_) modelAdjusted = clfAdjusted.fit( stintX, stintYAdjusted) #, sample_weight=sample_weights) modelRaw = clfRaw.fit(stintX, stintYRaw) #, sample_weight=sample_weights) playerArr = np.transpose( np.array(filteredPlayers).reshape(1, len(filteredPlayers))) coefOArrAdj = np.transpose(modelAdjusted.coef_[:, 0:len(filteredPlayers)]) coefDArrAdj = np.transpose(modelAdjusted.coef_[:, len(filteredPlayers):])
def run_baselines_particle_size(data, options): """ Run regression model(s) on single replica of data (no random resampling, but uses indexes). Good for testing training and testing on manually specified splits :param data: input dataset, training and test mixed, [x,y] labels last column :param kwargs: Dictionary containing options. Fields are: | SEP_METHOD : ['interpolation','prediction'] -> Mode of learning / testing | NUM_REP : N -> N random resampling of training and test sets (ONLY 'interpolation') | LEG_P : [1, 2, 3] -> On which leg to predict. Treated separately by the models | METHODS : [ridgereg', 'pls', 'lasso', 'rbfgpr', 'rbfgprard', 'rf'] -> Regression method | LOG_Y : BOOL : -> whether to take the log of y (e.g. concentrations) | NORMALIZE_Y : BOOL -> whether to normalize outputs y | NORMALIZE_X : BOOL -> whether to normalize inputs x | SAVEFOLDER : STRING -> folder address to store results | MODELNAME : STRING -> name of the model file and scores | SPLIT_SIZE : FLOAT [0,1] -> percentage of training to test datapoints | TRN_TEST_INDEX : DF -> list of integers containing wheter the point belongs to training (=1) or | SAVE_PRED : BOOL -> strore predicted values for trn and test (denormalized if needed) to the test set (=2). Has to be same size of data.shape[0] :returns: A dictionary containing weights, accuracy scores for training and test sets """ SEP_METHOD = options['SEP_METHOD'] NUM_REP = options['NUM_REP'] LEG_P = options['LEG_P'] METHODS = options['METHODS'] NORMALIZE_Y = options['NORMALIZE_Y'] NORMALIZE_X = options['NORMALIZE_X'] SAVEFOLDER = options['SAVEFOLDER'] MODELNAME = options['MODELNAME'] SPLIT_SIZE = options['SPLIT_SIZE'] TRN_TEST_INDEX = options['TRN_TEST_INDEX'] LOG_Y = options['LOG_Y'] SAVE_PRED = options['SAVE_PRED'] #SAVE_TEXT_DUMP = kwargs['SAVE_TEXT_DUMP'] if not os.path.isdir(SAVEFOLDER): os.mkdir(SAVEFOLDER) if os.path.exists(SAVEFOLDER / MODELNAME): print("file exists, overwriting") summ = {} #if SAVE_TEXT_DUMP: # results = pd.DataFrame(index=[],columns=['tst_r2','tst_rmse','trn_r2','trn_rmse','n_tr','n_ts']) # if LOG_Y: # data.parbin = data.parbin.apply(np.log) #(data.loc[:,'parbin'].copy()+10e-6) for sep_method in SEP_METHOD: # print(sep_method) for leg in LEG_P: # print(leg) for meth in METHODS: nre = 0 while nre < NUM_REP: np.random.seed(nre) string_exp = 'leg_' + str(leg) + '_' + sep_method + '_' + meth + '_' + str(nre) nre += 1 data_f = data.copy() # leg_whole_.loc[:,'parbin'] = np.log(leg_whole_.loc[:,'parbin']) if leg != 0: if 'leg' not in data.columns.tolist(): data_f = dataset.add_legs_index(data_f) data_f = data_f.loc[data_f['leg'] == leg] data_f.drop('leg', axis=1, inplace=True) else: if 'leg' in data.columns.tolist(): data_f.drop('leg', axis=1, inplace=True) leg_whole_ = data_f.dropna().copy() if LOG_Y: leg_whole_.loc[:,'parbin'] = leg_whole_.parbin.apply(lambda x: np.log(x + 1e-10)) s1, s2 = leg_whole_.shape if s1 < 10: continue if not TRN_TEST_INDEX.values.any(): # mode = 'interpolation', 'prediction', 'temporal_subset' inds = modeling.sample_trn_test_index(leg_whole_.index, split=SPLIT_SIZE, mode=sep_method, group='all', options=options['SUB_OPTIONS']) trn = leg_whole_.loc[(inds.iloc[:,0]==1),:].copy() tst = leg_whole_.loc[(inds.iloc[:,0]==2),:].copy() ###### INSERT SPLIT FUNCTION HERE: # separation = SPLIT_SIZE # trn_size = ceil(s1*separation) #; # # if sep_method.lower() == 'prediction': # # print('training data until ' + str(separation) + ', then test.') # trn = leg_whole_.iloc[:trn_size,:].copy() # tst = leg_whole_.iloc[trn_size:,:].copy() # # elif sep_method.lower() == 'interpolation': # # print('training data random %f pc subset, rest test'%(separation*100)) # leg_whole_ = shuffle(leg_whole_) # trn = leg_whole_.iloc[:trn_size,:].copy() # tst = leg_whole_.iloc[trn_size:,:].copy() elif TRN_TEST_INDEX.values.any(): trn = leg_whole_.loc[TRN_TEST_INDEX.values == 1,:].copy() tst = leg_whole_.loc[TRN_TEST_INDEX.values == 2,:].copy() inds_trn = trn.index inds_tst = tst.index # Standardize data to 0 mean unit variance based on training statistics (assuming stationarity) # SCALE TRAINING DATA X, y if NORMALIZE_X: scalerX = preprocessing.StandardScaler().fit(trn.iloc[:,:-1]) X = scalerX.transform(trn.iloc[:,:-1])#, columns=trn.iloc[:,:-1].columns, index=trn.index) else: X = trn.iloc[:,:-1] if NORMALIZE_Y: scalerY = preprocessing.StandardScaler().fit(trn.iloc[:,-1].values.reshape(-1, 1)) y = scalerY.transform(trn.iloc[:,-1].values.reshape(-1, 1)) else: y = trn.iloc[:,-1] ######### 1 : Ridge Regression if meth.lower() == 'ridgereg': MSE_error = make_scorer(mean_squared_error, greater_is_better=False) regModel = RidgeCV(alphas=np.logspace(-3,0), fit_intercept=True, normalize=False, store_cv_values=False, gcv_mode='svd', cv=5).fit(X,y) #(trn.iloc[:,:-1], trn.iloc[:,-1] regModel.coef_ = regModel.coef_[0] elif meth.lower() == 'bayesianreg': regModel = sk.linear_model.BayesianRidge(n_iter=500, tol=1.e-6, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=False, normalize=False).fit(X,y.ravel()) elif meth.lower() == 'pls': n = 3 regModel = PLSRegression(n_components=n, scale=False).fit(X,y) regModel.coef_ = np.squeeze(np.transpose(regModel.coef_)) elif meth.lower() == 'lasso': regModel = LassoCV(alphas=np.logspace(-2,0,1), n_alphas=500, fit_intercept=True, max_iter=5000, cv=5).fit(X,y.ravel()) elif meth.lower() == 'lingpr': kernel = kernels.DotProduct(sigma_0 = 1, sigma_0_bounds=(1e-05, 1e05)) + \ 1.0 * kernels.WhiteKernel(noise_level=1e-3, noise_level_bounds=(1e-3, 1e+3)) regModel = GaussianProcessRegressor(kernel=kernel, optimizer='fmin_l_bfgs_b', alpha=0, n_restarts_optimizer=5).fit(X,y) str_kernel = str(kernel) # print(str_kernel) elif meth.lower() == 'rf': import sklearn.ensemble regModel = sklearn.ensemble.RandomForestRegressor(n_estimators=500, criterion='mse', max_features='sqrt', max_depth=15, min_samples_split=2, min_samples_leaf=1).fit(X,np.ravel(y)) regModel.coef_ = regModel.feature_importances_ elif meth.lower() == 'gpr': kernel = 1.0 * kernels.RBF(length_scale=1.0, length_scale_bounds=(1e0, 1e2)) + \ 1.0 * kernels.WhiteKernel(noise_level=1e-2, noise_level_bounds=(1e-2, 1e2)) # kernels.ExpSineSquared(length_scale=1, periodicity=1) + \ # 1.0 * kernels.DotProduct(sigma_0=1.0, sigma_0_bounds=(1e-02, 1e2)) #* kernels.ExpSineSquared(length_scale=1, periodicity=1) + \ 1.0 * kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-02, 100.0)) + \ regModel = GaussianProcessRegressor(kernel=kernel, optimizer='fmin_l_bfgs_b', alpha=0.5, n_restarts_optimizer=5).fit(X,y) # print(regModel.kernel_) elif meth.lower() == 'gprard': #x = trn.iloc[:,:-1].values #y = trn.iloc[:,-1].values.reshape(-1,1) s1 = X.shape[1] k = (GPy.kern.RBF(s1, ARD=True) + GPy.kern.White(s1, 1) + GPy.kern.Bias(s1, 1)) #+ GPy.kern.Linear(s1, variances=0.001, ARD=False)) regModel = GPy.models.GPRegression(X, y, kernel=k) #regModel.optimize_restarts(parallel=True, robust=True, num_restarts=5, max_iters=200) regModel.optimize('scg', max_iters=200) # 'scg' regModel.coef_ = np.array(regModel.sum.rbf.lengthscale) else: print('method not implemented yet. Or check the spelling') break if NORMALIZE_X: x = scalerX.transform(tst.iloc[:,:-1])#, columns=tst.iloc[:,:-1].columns, index=tst.index) else: x = tst.iloc[:,:-1] y_ts_gt = tst.iloc[:,-1] if meth.lower() == 'gprard': # x_ = tst_.values # x = trn.iloc[:,:-1].values y_ts_h = regModel.predict(x)[0].reshape(-1,) y_tr_h = regModel.predict(X)[0].reshape(-1,) elif (meth.lower() == 'bayesianreg') or (meth.lower() == 'gpr'): [y_ts_h, y_ts_std] = regModel.predict(x,return_std=SAVE_PRED) y_ts_h, y_ts_std = y_ts_h.reshape(-1,), y_ts_std.reshape(-1,) [y_tr_h, y_tr_std] = regModel.predict(X,return_std=SAVE_PRED) y_tr_h, y_tr_std = y_tr_h.reshape(-1,), y_tr_std.reshape(-1,) else: y_ts_h = regModel.predict(x).reshape(-1,) y_tr_h = regModel.predict(X).reshape(-1,) if NORMALIZE_Y: y_tr_h = scalerY.inverse_transform(y_tr_h) y_ts_h = scalerY.inverse_transform(y_ts_h) y_tr_gt = scalerY.inverse_transform(y)#trn.iloc[:,-1] # print(trn.iloc[:,-1].values[0:10],y_tr_gt[0:10], y[0:10]) else: y_tr_gt = y#trn.iloc[:,-1] # print(y[:10], y_tr_gt[:10]) # Compute scores if LOG_Y: y_ts_gt = np.exp(y_ts_gt) - 1e-10 y_ts_h = np.exp(y_ts_h) - 1e-10 y_tr_gt = np.exp(y_tr_gt) - 1e-10 y_tr_h = np.exp(y_tr_h) - 1e-10 # print(np.min(y_tr_gt),np.max(y_tr_gt), ' -- ', np.min(y_tr_h),np.max(y_tr_h)) # print(np.min(y_ts_gt),np.max(y_ts_gt), ' -- ', np.min(y_ts_h),np.max(y_ts_h)) mse = np.sqrt(mean_squared_error(y_ts_gt, y_ts_h)) r2 = r2_score(y_ts_gt, y_ts_h) t_mse = np.sqrt(mean_squared_error(y_tr_gt, y_tr_h)) t_r2 = r2_score(y_tr_gt, y_tr_h) if hasattr(regModel, 'alpha_') & hasattr(regModel, 'coef_'): summ[string_exp] = {'regularizer': regModel.alpha_, 'weights': regModel.coef_, 'tr_RMSE': t_mse, 'tr_R2': t_r2, 'ts_RMSE': mse, 'ts_R2': r2, 'tr_size': trn.shape[0], 'ts_size': tst.shape[0]}#, # 'y_tr_hat': y_tr_h, # 'y_ts_hat': y_ts_h} if 'str_kernel' in locals(): summ[string_exp].update({'kernel': str_kernel}) elif hasattr(regModel, 'coef_') & ~hasattr(regModel, 'alpha_'): summ[string_exp] = {'weights': regModel.coef_, 'tr_RMSE': t_mse, 'tr_R2': t_r2, 'ts_RMSE': mse, 'ts_R2': r2, 'tr_size': trn.shape[0], 'ts_size': tst.shape[0]}#, # 'y_tr_hat': y_tr_h, # 'y_ts_hat': y_ts_h} else: summ[string_exp] = {'tr_RMSE': t_mse, 'tr_R2': t_r2, 'ts_RMSE': mse, 'ts_R2': r2, 'tr_size': trn.shape[0], 'ts_size': tst.shape[0]}#, # 'y_tr_hat': y_tr_h, # 'y_ts_hat': y_ts_h} if 'str_kernel' in locals(): summ[string_exp].update({'kernel': str_kernel}) if SAVE_PRED: # Convert to pandas # print(y_tr_gt[:10]) y_tr_h = pd.Series(y_tr_h,index=inds_trn) y_ts_h = pd.Series(y_ts_h,index=inds_tst) y_tr_gt = pd.Series(np.reshape(y_tr_gt,(-1,)),index=inds_trn) y_ts_gt = pd.Series(np.reshape(y_ts_gt,(-1,)),index=inds_tst) # print(y_tr_gt.iloc[:10]) if 'y_ts_std' in locals(): y_ts_std = pd.Series(y_ts_std,index=inds_tst) y_tr_std = pd.Series(y_tr_std,index=inds_trn) # Add to dictionary summ[string_exp].update({'y_tr_hat': y_tr_h, 'y_ts_hat': y_ts_h, 'y_tr_gt': y_tr_gt, 'y_ts_gt': y_ts_gt}) # print(summ[string_exp]['y_tr_gt'].head(), summ[string_exp]['y_ts_gt'].head()) if 'y_ts_std' in locals(): summ[string_exp].update({'y_tr_std': y_tr_std, 'y_ts_std': y_ts_std}) #if SAVE_TEXT_DUMP: # results = pd.DataFrame(index=[],columns=['n_ts', 'tst_r2','tst_rmse',' n_tr', 'trn_r2','trn_rmse']) # results.loc[nre-1] = [len(y_ts_h), r2, mse, len(y_tr_h), t_r2, t_mse] del leg_whole_, regModel, y_tr_gt, y_ts_gt, y_tr_h, y_ts_h, trn, tst # save_obj(summ, SAVEFOLDER / MODELNAME) #results.to_csv(path_or_buf=SAVEFOLDER + MODELNAME + '.csv', sep='\t') return summ