Example #1
0
def visualize_zs(zs, labels, perplexity=30, learning_rate=200, n_iter=1000):
    plt.clf()
    plt.figure(figsize=(7,6))
    points = TSNE(n_components=2, random_state=0, perplexity=perplexity, learning_rate=learning_rate, n_iter=n_iter).fit_transform(zs)
    plt.scatter(points.transpose()[0], points.transpose()[1], s=20, c=labels)
    plt.colorbar()
    plt.show()
Example #2
0
def visualize_zsp(zs, perplexities, labels=None, learning_rate=200, n_iter=2000):
    plt.clf()
    fig = plt.figure(figsize=(len(perplexities) * 4, 4))
    for i, perplexity in enumerate(perplexities):
        points = TSNE(n_components=2, random_state=0, perplexity=perplexity, learning_rate=learning_rate, n_iter=n_iter).fit_transform(zs)
        ax = fig.add_subplot(1, len(perplexities), i + 1)
        ax.scatter(points.transpose()[0], points.transpose()[1], s=5) if labels is None else ax.scatter(points.transpose()[0], points.transpose()[1], s=5, c=labels)
    fig.show()
def CalculateTNSE(tdata):
    u_tnse = TSNE(n_components=2).fit_transform(tdata.T)
    u_tnse = u_tnse.transpose()
    u_tnse = u_tnse[:2]
    dataTNSE = np.concatenate((u_tnse[0][:,None],u_tnse[1][:,None]), axis = 1)
    W_TNSE = tdata.dot(dataTNSE)
    return W_TNSE
Example #4
0
def compute_tsne__csv(input_filename, output_filename):

    df = pd.read_csv(input_filename, header=0)

    features_df = df[df.columns[2:12]]

    X = np.array(features_df)

    X_embedded = TSNE(
        n_components=2,
        early_exaggeration=48,  # default is 12
        learning_rate=100,  # default is 200
        verbose=0,  # default is 0
    ).fit_transform(X)

    X_embedded__transposed = X_embedded.transpose()

    df.insert(14, 'tsne_0', X_embedded__transposed[0], True)
    df.insert(15, 'tsne_1', X_embedded__transposed[1], True)

    df.to_csv(output_filename, index=False)
Example #5
0
    df.to_csv(output_filename, index=False)


if __name__ == '__main__':

    df = pd.read_csv(
        'transitional_data/rnaseq_data__genes_x_timepoints__normalized__go_labeled.csv'
    )

    features_df = df[df.columns[2:12]]

    X = np.array(features_df)

    X_embedded = TSNE(
        n_components=2,
        early_exaggeration=48,  # default is 12
        learning_rate=100,  # default is 200
        verbose=2,  # default is 0
    ).fit_transform(X)

    X_embedded__transposed = X_embedded.transpose()

    scatter_plot(X_embedded__transposed[0], X_embedded__transposed[1])

    df.insert(14, 'tsne_0', X_embedded__transposed[0], True)
    df.insert(15, 'tsne_1', X_embedded__transposed[1], True)

    df.to_csv(
        'transitional_data/rnaseq_data__genes_x_timepoints__normalized__go_labeled__tsne.csv',
        index=False)
Example #6
0
testVec = data[:, border:]  # test data vectors

# initialize kohonen network

kohNet = nf.netInit(7)

# teach network on learnVec

kohNetLearned, clustLearnVec = nf.netLearn(kohNet, learnVec)

# test network

clustTestVec = nf.netClust(kohNetLearned, testVec)

# reduce data dimension to 3 by using TSNE (for possible visualising)

data_embedded = TSNE(n_components=3,
                     method='barnes_hut').fit_transform(data.transpose())
data_embedded = data_embedded.transpose()

# output results

clustVec = np.concatenate((clustLearnVec, clustTestVec))
print("\nClusters of data\n", clustVec, "\n")
print("Number of classes: ", kohNetLearned['numClusters'])
print("\nEmbedded data\n", data_embedded)
print('\n-- The algorithm took', np.float16(time.time() - start_time),
      'seconds to complete --')  # execution time

# In[ ]:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
X = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
X_embedded = TSNE(n_components=2).fit_transform(X)
Y = X_embedded.transpose()
plt.plot(Y[0], Y[1], "p")
plt.show()