Example #1
0
    def matthews_corrcoef(y_true, y_pred, sample_weight=None):
        from sklearn.metrics.classification import (
            _check_targets,
            LabelEncoder,
            confusion_matrix,
        )

        y_type, y_true, y_pred = _check_targets(y_true, y_pred)
        if y_type not in {'binary', 'multiclass'}:
            raise ValueError('%s is not supported' % y_type)
        lb = LabelEncoder()
        lb.fit(np.hstack([y_true, y_pred]))
        y_true = lb.transform(y_true)
        y_pred = lb.transform(y_pred)
        C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight)
        t_sum = C.sum(axis=1)
        p_sum = C.sum(axis=0)
        n_correct = np.trace(C)
        n_samples = p_sum.sum()
        cov_ytyp = n_correct * n_samples - np.dot(t_sum, p_sum)
        cov_ypyp = n_samples**2 - np.dot(p_sum, p_sum)
        cov_ytyt = n_samples**2 - np.dot(t_sum, t_sum)
        mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)
        if np.isnan(mcc):
            return 0.0
        else:
            return mcc
def balanced_accuracy_score(y_true, y_pred, sample_weight=None):
    """Compute the balanced accuracy
    The balanced accuracy is used in binary classification problems to deal
    with imbalanced datasets. It is defined as the arithmetic mean of
    sensitivity (true positive rate) and specificity (true negative rate),
    or the average recall obtained on either class. It is also equal to the
    ROC AUC score given binary inputs.
    The best value is 1 and the worst value is 0.
    Read more in the :ref:`User Guide <balanced_accuracy_score>`.
    Parameters
    ----------
    y_true : 1d array-like
        Ground truth (correct) target values.
    y_pred : 1d array-like
        Estimated targets as returned by a classifier.
    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.
    Returns
    -------
    balanced_accuracy : float.
        The average of sensitivity and specificity
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if y_type != 'binary':
        raise ValueError('Balanced accuracy is only meaningful '
                         'for binary classification problems.')
    # simply wrap the ``recall_score`` function
    return recall_score(y_true, y_pred,
                        pos_label=None,
                        average='macro',
                        sample_weight=sample_weight)
Example #3
0
    def score(self, X, y):
        """
        Generates a 2D array where each row is the count of the
        predicted classes and each column is the true class

        Parameters
        ----------
        X : ndarray or DataFrame of shape n x m
            A matrix of n instances with m features

        y : ndarray or Series of length n
            An array or series of target or class values

        Returns
        -------
        score_ : float
            Global accuracy score
        """
        # Must be computed before calling super
        # We're relying on predict to raise NotFitted
        y_pred = self.predict(X)
        y_type, y_true, y_pred = _check_targets(y, y_pred)
        if y_type not in ("binary", "multiclass"):
            raise YellowbrickValueError("{} is not supported".format(y_type))

        # Get the indices of the unique labels
        indices = unique_labels(y_true, y_pred)
        labels = self._labels()

        # Call super to compute self.score_ and verify classes
        try:
            super(ClassPredictionError, self).score(X, y)
        except ModelError as e:
            # raise visualizer-specific errors
            if labels is not None and len(labels) < len(indices):
                raise NotImplementedError(
                    "filtering classes is currently not supported"
                )
            else:
                raise e

        # Ensure all labels are used
        if labels is not None and len(labels) > len(indices):
            raise ModelError(
                "y and y_pred contain zero values for one of the specified classes"
            )

        # Create a table of predictions whose rows are the true classes
        # and whose columns are the predicted classes; each element
        # is the count of predictions for that class that match the true
        # value of that class.
        self.predictions_ = np.array(
            [
                [(y_pred[y == label_t] == label_p).sum() for label_p in indices]
                for label_t in indices
            ]
        )

        self.draw()
        return self.score_
def _balanced_accuracy(solution, prediction):
    y_type, solution, prediction = _check_targets(solution, prediction)

    if y_type not in ["binary", "multiclass", 'multilabel-indicator']:
        raise ValueError("{0} is not supported".format(y_type))

    if y_type == 'binary':
        # Do not transform into any multiclass representation
        max_value = max(np.max(solution), np.max(prediction))
        min_value = min(np.min(solution), np.min(prediction))
        if max_value == min_value:
            return 1.0
        solution = (solution - min_value) / (max_value - min_value)
        prediction = (prediction - min_value) / (max_value - min_value)

    elif y_type == 'multiclass':
        # Need to create a multiclass solution and a multiclass predictions
        max_class = int(np.max((np.max(solution), np.max(prediction))))
        solution_binary = np.zeros((len(solution), max_class + 1))
        prediction_binary = np.zeros((len(prediction), max_class + 1))
        for i in range(len(solution)):
            solution_binary[i, int(solution[i])] = 1
            prediction_binary[i, int(prediction[i])] = 1
        solution = solution_binary
        prediction = prediction_binary

    elif y_type == 'multilabel-indicator':
        solution = solution.toarray()
        prediction = prediction.toarray()
    else:
        raise NotImplementedError('bac_metric does not support task type %s' %
                                  y_type)

    fn = np.sum(np.multiply(solution, (1 - prediction)), axis=0, dtype=float)
    tp = np.sum(np.multiply(solution, prediction), axis=0, dtype=float)
    # Bounding to avoid division by 0
    eps = 1e-15
    tp = sp.maximum(eps, tp)
    pos_num = sp.maximum(eps, tp + fn)
    tpr = tp / pos_num  # true positive rate (sensitivity)

    if y_type in ('binary', 'multilabel-indicator'):
        tn = np.sum(np.multiply((1 - solution), (1 - prediction)),
                    axis=0,
                    dtype=float)
        fp = np.sum(np.multiply((1 - solution), prediction),
                    axis=0,
                    dtype=float)
        tn = sp.maximum(eps, tn)
        neg_num = sp.maximum(eps, tn + fp)
        tnr = tn / neg_num  # true negative rate (specificity)
        bac = 0.5 * (tpr + tnr)
    elif y_type == 'multiclass':
        label_num = solution.shape[1]
        bac = tpr
    else:
        raise ValueError(y_type)

    return np.mean(bac)  # average over all classes
Example #5
0
def balanced_accuracy_score(y_true, y_pred, balance=0.5):
    """Balanced accuracy classification score.
    The formula for the balanced accuracy score ::
        balanced accuracy = balance * TP/(TP + FP) + (1 - balance) * TN/(TN + FN)
    Because it needs true/false negative/positive notion it only
    supports binary classification.
    The `balance` parameter determines the weight of sensitivity in the combined
    score. ``balance -> 1`` lends more weight to sensitiviy, while ``balance -> 0``
    favors specificity (``balance = 1`` considers only sensitivity, ``balance = 0``
    only specificity).
    Read more in the :ref:`User Guide <balanced_accuracy_score>`.
    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) labels.
    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted labels, as returned by a classifier.
    balance : float between 0 and 1. Weight associated with the sensitivity
        (or recall) against specificty in final score.
    Returns
    -------
    score : float
    See also
    --------
    accuracy_score
    References
    ----------
    .. [1] `Wikipedia entry for the accuracy and precision
           <http://en.wikipedia.org/wiki/Accuracy_and_precision>`
    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import balanced_accuracy_score
    >>> y_pred = [0, 0, 1]
    >>> y_true = [0, 1, 1]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.75
    >>> y_pred = ["cat", "cat", "ant"]
    >>> y_true = ["cat", "ant", "ant"]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.75
    """

    if balance < 0. or 1. < balance:
        raise ValueError("balance has to be between 0 and 1")

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if y_type is not "binary":
        raise ValueError("%s is not supported" % y_type)

    cm = confusion_matrix(y_true, y_pred)
    neg, pos = cm.sum(axis=1, dtype='float')
    tn, tp = np.diag(cm)

    sensitivity = tp / pos
    specificity = tn / neg

    return balance * sensitivity + (1 - balance) * specificity
Example #6
0
def balanced_accuracy(solution, prediction):
    y_type, solution, prediction = _check_targets(solution, prediction)

    if y_type not in ["binary", "multiclass", 'multilabel-indicator']:
        raise ValueError(f"{y_type} is not supported")

    if y_type == 'binary':
        # Do not transform into any multiclass representation
        pass

    elif y_type == 'multiclass':
        n = len(solution)
        unique_sol, encoded_sol = np.unique(solution, return_inverse=True)
        unique_pred, encoded_pred = np.unique(prediction, return_inverse=True)
        classes = np.unique(np.concatenate((unique_sol, unique_pred)))
        map_sol = np.array([np.where(classes == c)[0][0] for c in unique_sol])
        map_pred = np.array(
            [np.where(classes == c)[0][0] for c in unique_pred])
        # one hot encoding
        sol_ohe = np.zeros((n, len(classes)))
        pred_ohe = np.zeros((n, len(classes)))
        sol_ohe[np.arange(n), map_sol[encoded_sol]] = 1
        pred_ohe[np.arange(n), map_pred[encoded_pred]] = 1
        solution = sol_ohe
        prediction = pred_ohe

    elif y_type == 'multilabel-indicator':
        solution = solution.toarray()
        prediction = prediction.toarray()
    else:
        raise NotImplementedError(
            f'bac_metric does not support task type {y_type}')

    fn = np.sum(np.multiply(solution, (1 - prediction)), axis=0, dtype=float)
    tp = np.sum(np.multiply(solution, prediction), axis=0, dtype=float)
    # Bounding to avoid division by 0
    eps = 1e-15
    tp = np.maximum(eps, tp)
    pos_num = np.maximum(eps, tp + fn)
    tpr = tp / pos_num  # true positive rate (sensitivity)

    if y_type in ('binary', 'multilabel-indicator'):
        tn = np.sum(np.multiply((1 - solution), (1 - prediction)),
                    axis=0,
                    dtype=float)
        fp = np.sum(np.multiply((1 - solution), prediction),
                    axis=0,
                    dtype=float)
        tn = np.maximum(eps, tn)
        neg_num = np.maximum(eps, tn + fp)
        tnr = tn / neg_num  # true negative rate (specificity)
        bac = 0.5 * (tpr + tnr)
    elif y_type == 'multiclass':
        bac = tpr
    else:
        raise ValueError(y_type)

    return np.mean(bac)  # average over all classes
Example #7
0
def balanced_accuracy_score(y_true, y_pred, balance=0.5):
    """Balanced accuracy classification score.
    The formula for the balanced accuracy score ::
        balanced accuracy = balance * TP/(TP + FP) + (1 - balance) * TN/(TN + FN)
    Because it needs true/false negative/positive notion it only
    supports binary classification.
    The `balance` parameter determines the weight of sensitivity in the combined
    score. ``balance -> 1`` lends more weight to sensitiviy, while ``balance -> 0``
    favors specificity (``balance = 1`` considers only sensitivity, ``balance = 0``
    only specificity).
    Read more in the :ref:`User Guide <balanced_accuracy_score>`.
    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) labels.
    y_pred : 1d array-like, or label indicator array / sparse matrix
        Predicted labels, as returned by a classifier.
    balance : float between 0 and 1. Weight associated with the sensitivity
        (or recall) against specificty in final score.
    Returns
    -------
    score : float
    See also
    --------
    accuracy_score
    References
    ----------
    .. [1] `Wikipedia entry for the accuracy and precision
           <http://en.wikipedia.org/wiki/Accuracy_and_precision>`
    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import balanced_accuracy_score
    >>> y_pred = [0, 0, 1]
    >>> y_true = [0, 1, 1]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.75
    >>> y_pred = ["cat", "cat", "ant"]
    >>> y_true = ["cat", "ant", "ant"]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.75
    """

    if balance < 0. or 1. < balance:
        raise ValueError("balance has to be between 0 and 1")

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if y_type is not "binary":
        raise ValueError("%s is not supported" % y_type)

    cm = confusion_matrix(y_true, y_pred)
    neg, pos = cm.sum(axis=1, dtype='float')
    tn, tp = np.diag(cm)

    sensitivity = tp / pos
    specificity = tn / neg

    return balance * sensitivity + (1 - balance) * specificity
Example #8
0
def _assert_binary(y1, y2=None):

    if y2 is None:
        y2 = y1

    y_type, _, _ = _check_targets(y1, y2)

    if y_type != 'binary':
        raise ValueError('y_true and y_pred must be binary.')
def balanced_accuracy(solution, prediction):
    y_type, solution, prediction = _check_targets(solution, prediction)

    if y_type not in ["binary", "multiclass", 'multilabel-indicator']:
        raise ValueError("{0} is not supported".format(y_type))

    if y_type == 'binary':
        # Do not transform into any multiclass representation
        pass

    elif y_type == 'multiclass':
        # Need to create a multiclass solution and a multiclass predictions
        max_class = int(np.max((np.max(solution), np.max(prediction))))
        solution_binary = np.zeros((len(solution), max_class + 1))
        prediction_binary = np.zeros((len(prediction), max_class + 1))
        for i in range(len(solution)):
            solution_binary[i, int(solution[i])] = 1
            prediction_binary[i, int(prediction[i])] = 1
        solution = solution_binary
        prediction = prediction_binary

    elif y_type == 'multilabel-indicator':
        solution = solution.toarray()
        prediction = prediction.toarray()
    else:
        raise NotImplementedError('bac_metric does not support task type %s'
                                  % y_type)

    fn = np.sum(np.multiply(solution, (1 - prediction)), axis=0,
                dtype=float)
    tp = np.sum(np.multiply(solution, prediction), axis=0, dtype=float)
    # Bounding to avoid division by 0
    eps = 1e-15
    tp = sp.maximum(eps, tp)
    pos_num = sp.maximum(eps, tp + fn)
    tpr = tp / pos_num  # true positive rate (sensitivity)

    if y_type in ('binary', 'multilabel-indicator'):
        tn = np.sum(np.multiply((1 - solution), (1 - prediction)),
                    axis=0, dtype=float)
        fp = np.sum(np.multiply((1 - solution), prediction), axis=0,
                    dtype=float)
        tn = sp.maximum(eps, tn)
        neg_num = sp.maximum(eps, tn + fp)
        tnr = tn / neg_num  # true negative rate (specificity)
        bac = 0.5 * (tpr + tnr)
    elif y_type == 'multiclass':
        label_num = solution.shape[1]
        bac = tpr
    else:
        raise ValueError(y_type)

    return np.mean(bac)  # average over all classes
    def score(self, X, y, **kwargs):
        """
        Generates a 2D array where each row is the count of the
        predicted classes and each column is the true class

        Parameters
        ----------
        X : ndarray or DataFrame of shape n x m
            A matrix of n instances with m features

        y : ndarray or Series of length n
            An array or series of target or class values

        Returns
        -------
        score_ : float
            Global accuracy score
        """

        # We're relying on predict to raise NotFitted
        y_pred = self.predict(X)

        y_type, y_true, y_pred = _check_targets(y, y_pred)

        if y_type not in ("binary", "multiclass"):
            raise YellowbrickValueError("%s is not supported" % y_type)

        indices = unique_labels(y_true, y_pred)

        if len(self.classes_) > len(indices):
            raise ModelError("y and y_pred contain zero values "
                             "for one of the specified classes")
        elif len(self.classes_) < len(indices):
            raise NotImplementedError("filtering classes is "
                                        "currently not supported")

        # Create a table of predictions whose rows are the true classes
        # and whose columns are the predicted classes; each element
        # is the count of predictions for that class that match the true
        # value of that class.
        self.predictions_ = np.array([
            [
                (y_pred[y == label_t] == label_p).sum()
                for label_p in indices
            ]
            for label_t in indices
        ])

        self.draw()
        self.score_ = self.estimator.score(X, y)

        return self.score_
Example #11
0
def confusion_matrix_2017_new(y_true, y_pred, labels=None, sample_weight=None):
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if y_type not in ("binary", "multiclass"):
        raise ValueError("%s is not supported" % y_type)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)
        if np.all([l not in y_true for l in labels]):
            raise ValueError("At least one label specified must be in y_true")

    if sample_weight is None:
        sample_weight = np.ones(y_true.shape[0], dtype=np.int64)
    else:
        sample_weight = np.asarray(sample_weight)

    check_consistent_length(sample_weight, y_true, y_pred)

    n_labels = labels.size
    # If labels are not consecitive integers starting from zero, then
    # yt, yp must be converted into index form
    need_index_conversion = not (
        labels.dtype.kind in {'i', 'u', 'b'} and
        labels.min() == 0 and np.all(np.diff(labels) == 1) and
        y_true.min() >= 0 and y_pred.min() >= 0
    )
    if need_index_conversion:
        label_to_ind = dict((y, x) for x, y in enumerate(labels))
        y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred])
        y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true])

    # eliminate items in y_true, y_pred not in labels
    isvalid = np.logical_and(y_pred < n_labels, y_true < n_labels)
    if not np.all(isvalid):
        y_pred = y_pred[isvalid]
        y_true = y_true[isvalid]
        # also eliminate weights of eliminated items
        sample_weight = sample_weight[isvalid]

    # Choose the accumulator dtype to always have high precision
    if sample_weight.dtype.kind in {'i', 'u', 'b'}:
        dtype = np.int64
    else:
        dtype = np.float64

    CM = coo_matrix((sample_weight, (y_true, y_pred)),
                    shape=(n_labels, n_labels), dtype=dtype,
                    ).toarray()

    return CM
Example #12
0
def balanced_accuracy_score(y_true, y_pred, sample_weight=None):
    """Compute the balanced accuracy
    The balanced accuracy is used in binary classification problems to deal
    with imbalanced datasets. It is defined as the arithmetic mean of
    sensitivity (true positive rate) and specificity (true negative rate),
    or the average recall obtained on either class. It is also equal to the
    ROC AUC score given binary inputs.
    The best value is 1 and the worst value is 0.
    Read more in the :ref:`User Guide <balanced_accuracy_score>`.
    Parameters
    ----------
    y_true : 1d array-like
        Ground truth (correct) target values.
    y_pred : 1d array-like
        Estimated targets as returned by a classifier.
    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.
    Returns
    -------
    balanced_accuracy : float.
        The average of sensitivity and specificity
    See also
    --------
    recall_score, roc_auc_score
    References
    ----------
    .. [1] Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010).
           The balanced accuracy and its posterior distribution.
           Proceedings of the 20th International Conference on Pattern
           Recognition, 3121-24.
    Examples
    --------
    >>> from sklearn.metrics import balanced_accuracy_score
    >>> y_true = [0, 1, 0, 0, 1, 0]
    >>> y_pred = [0, 1, 0, 0, 0, 1]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.625
    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)

    if y_type != 'binary':
        raise ValueError('Balanced accuracy is only meaningful '
                         'for binary classification problems.')
    # simply wrap the ``recall_score`` function
    return recall_score(y_true,
                        y_pred,
                        pos_label=None,
                        average='macro',
                        sample_weight=sample_weight)
Example #13
0
    def score(self, X, y, **kwargs):
        """
        Generates a 2D array where each row is the count of the
        predicted classes and each column is the true class

        Parameters
        ----------
        X : ndarray or DataFrame of shape n x m
            A matrix of n instances with m features

        y : ndarray or Series of length n
            An array or series of target or class values

        Returns
        -------
        score_ : float
            Global accuracy score
        """

        # We're relying on predict to raise NotFitted
        y_pred = self.predict(X)

        y_type, y_true, y_pred = _check_targets(y, y_pred)

        if y_type not in ("binary", "multiclass"):
            raise YellowbrickValueError("%s is not supported" % y_type)

        indices = unique_labels(y_true, y_pred)

        if len(self.classes_) > len(indices):
            raise ModelError("y and y_pred contain zero values "
                             "for one of the specified classes")
        elif len(self.classes_) < len(indices):
            raise NotImplementedError("filtering classes is "
                                      "currently not supported")

        # Create a table of predictions whose rows are the true classes
        # and whose columns are the predicted classes; each element
        # is the count of predictions for that class that match the true
        # value of that class.
        self.predictions_ = np.array([[(y_pred[y == label_t] == label_p).sum()
                                       for label_p in indices]
                                      for label_t in indices])

        self.draw()
        self.score_ = self.estimator.score(X, y)

        return self.score_
Example #14
0
def balanced_accuracy_score(y_true, y_pred, sample_weight=None):
    """Compute the balanced accuracy
    The balanced accuracy is used in binary classification problems to deal
    with imbalanced datasets. It is defined as the arithmetic mean of
    sensitivity (true positive rate) and specificity (true negative rate),
    or the average recall obtained on either class. It is also equal to the
    ROC AUC score given binary inputs.
    The best value is 1 and the worst value is 0.
    Read more in the :ref:`User Guide <balanced_accuracy_score>`.
    Parameters
    ----------
    y_true : 1d array-like
        Ground truth (correct) target values.
    y_pred : 1d array-like
        Estimated targets as returned by a classifier.
    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.
    Returns
    -------
    balanced_accuracy : float.
        The average of sensitivity and specificity
    See also
    --------
    recall_score, roc_auc_score
    References
    ----------
    .. [1] Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010).
           The balanced accuracy and its posterior distribution.
           Proceedings of the 20th International Conference on Pattern
           Recognition, 3121-24.
    Examples
    --------
    >>> from sklearn.metrics import balanced_accuracy_score
    >>> y_true = [0, 1, 0, 0, 1, 0]
    >>> y_pred = [0, 1, 0, 0, 0, 1]
    >>> balanced_accuracy_score(y_true, y_pred)
    0.625
    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)

    if y_type != 'binary':
        raise ValueError('Balanced accuracy is only meaningful '
                         'for binary classification problems.')
    # simply wrap the ``recall_score`` function
    return recall_score(y_true, y_pred,
                        pos_label=None,
                        average='macro',
                        sample_weight=sample_weight)
Example #15
0
def accuracy_rounding_score(y_true,
                            y_pred,
                            normalize=True,
                            sample_weight=None):
    for p in range(0, y_pred.size):
        labels = [
            500., 1000., 1500., 2000., 2500., 3000., 3500., 4000., 4500.,
            5000., 6000., 7000., 8000., 9000., 10000., 12500., 15000.
        ]
        y_pred[p] = min(labels, key=lambda x: abs(x - y_pred[p]))
    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    if y_type.startswith('multilabel'):
        differing_labels = count_nonzero(y_true - y_pred, axis=1)
        score = differing_labels == 0
    else:
        score = y_true == y_pred

    return _weighted_sum(score, sample_weight, normalize)
Example #16
0
def degree_of_agreement(y_true, y_pred, normalize=True, sample_weight=None):
    # Compute accuracy for each possible representation
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)

    if y_type.startswith('multilabel'):
        with np.errstate(divide='ignore', invalid='ignore'):
            # oddly, we may get an "invalid" rather than a "divide" error here
            pred_and_true = count_nonzero(
                y_true.multiply(y_pred), axis=1)  # cez inters eez
            len_true = count_nonzero(y_true)

            not_ytrue = 1 - y_true
            pred_and_nottrue = count_nonzero(not_ytrue.multiply(y_pred), axis=1)
            len_nottrue = count_nonzero(not_ytrue)

            pred_or_true = count_nonzero(y_true + y_pred, axis=1)

            # compute the doa statistic
            score = pred_and_true / len_true - pred_and_nottrue / len_nottrue
            # score = pred_and_true / pred_or_true
            print(score)
            score[pred_or_true == 0.0] = 1.0
            print(score)
    else:
        # oddly, we may get an "invalid" rather than a "divide" error here
        pred_and_true = np.count_nonzero(
            y_true * y_pred, axis=0)  # cez inters eez
        len_true = np.count_nonzero(y_true)

        not_ytrue = np.subtract(1, y_true)
        pred_and_nottrue = np.count_nonzero(not_ytrue * y_pred, axis=0)
        len_nottrue = np.count_nonzero(not_ytrue)

        # compute the doa statistic
        score = pred_and_true / len_true - pred_and_nottrue / len_nottrue

    return _weighted_sum(score, sample_weight, normalize)
def test__check_targets():
    """Check that _check_targets correctly merges target types, squeezes
    output and fails if input lengths differ."""
    IND = 'multilabel-indicator'
    SEQ = 'multilabel-sequences'
    MC = 'multiclass'
    BIN = 'binary'
    CNT = 'continuous'
    MMC = 'multiclass-multioutput'
    MCN = 'continuous-multioutput'
    # all of length 3
    EXAMPLES = [
        (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])),
        # must not be considered binary
        (IND, np.array([[0, 1], [1, 0], [1, 1]])),
        (SEQ, [[2, 3], [1], [3]]),
        (MC, [2, 3, 1]),
        (BIN, [0, 1, 1]),
        (CNT, [0., 1.5, 1.]),
        (MC, np.array([[2], [3], [1]])),
        (BIN, np.array([[0], [1], [1]])),
        (CNT, np.array([[0.], [1.5], [1.]])),
        (MMC, np.array([[0, 2], [1, 3], [2, 3]])),
        (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])),
    ]
    # expected type given input types, or None for error
    # (types will be tried in either order)
    EXPECTED = {
        (IND, IND): IND,
        (SEQ, SEQ): IND,
        (MC, MC): MC,
        (BIN, BIN): BIN,

        (IND, SEQ): None,
        (MC, SEQ): None,
        (BIN, SEQ): None,
        (MC, IND): None,
        (BIN, IND): None,
        (BIN, MC): MC,

        # Disallowed types
        (CNT, CNT): None,
        (MMC, MMC): None,
        (MCN, MCN): None,
        (IND, CNT): None,
        (SEQ, CNT): None,
        (MC, CNT): None,
        (BIN, CNT): None,
        (MMC, CNT): None,
        (MCN, CNT): None,
        (IND, MMC): None,
        (SEQ, MMC): None,
        (MC, MMC): None,
        (BIN, MMC): None,
        (MCN, MMC): None,
        (IND, MCN): None,
        (SEQ, MCN): None,
        (MC, MCN): None,
        (BIN, MCN): None,
    }

    for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2):
        try:
            expected = EXPECTED[type1, type2]
        except KeyError:
            expected = EXPECTED[type2, type1]
        if expected is None:
            assert_raises(ValueError, _check_targets, y1, y2)

            if type1 != type2:
                assert_raise_message(
                    ValueError,
                    "Can't handle mix of {0} and {1}".format(type1, type2),
                    _check_targets, y1, y2)

            else:
                if type1 not in (BIN, MC, SEQ, IND):
                    assert_raise_message(ValueError,
                                         "{0} is not supported".format(type1),
                                         _check_targets, y1, y2)

        else:
            merged_type, y1out, y2out = _check_targets(y1, y2)
            assert_equal(merged_type, expected)
            if merged_type.startswith('multilabel'):
                assert_equal(y1out.format, 'csr')
                assert_equal(y2out.format, 'csr')
            else:
                assert_array_equal(y1out, np.squeeze(y1))
                assert_array_equal(y2out, np.squeeze(y2))
            assert_raises(ValueError, _check_targets, y1[:-1], y2)
def sensitivity_specificity_support(y_true,
                                    y_pred,
                                    labels=None,
                                    pos_label=1,
                                    average=None,
                                    warn_for=('sensitivity', 'specificity'),
                                    sample_weight=None):
    """Compute sensitivity, specificity, and support for each class

    The sensitivity is the ratio ``tp / (tp + fn)`` where ``tp`` is the number
    of true positives and ``fn`` the number of false negatives. The sensitivity
    quantifies the ability to avoid false negatives_[1].

    The specificity is the ratio ``tn / (tn + fp)`` where ``tn`` is the number
    of true negatives and ``fn`` the number of false negatives. The specificity
    quantifies the ability to avoid false positives_[1].

    The support is the number of occurrences of each class in ``y_true``.

    If ``pos_label is None`` and in binary classification, this function
    returns the average sensitivity and specificity if ``average``
    is one of ``'weighted'``.

    Read more in the :ref:`User Guide <sensitivity_specificity>`.

    Parameters
    ----------
    y_true : ndarray, shape (n_samples, )
        Ground truth (correct) target values.

    y_pred : ndarray, shape (n_samples, )
        Estimated targets as returned by a classifier.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

    pos_label : str or int, optional (default=1)
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : str or None, optional (default=None)
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).
    warn_for : tuple or set, for internal use
        This determines which warnings will be made in the case that this
        function is being used to return only one of its metrics.

    sample_weight : ndarray, shape (n_samples, )
        Sample weights.

    Returns
    -------
    sensitivity : float (if ``average`` = None) or ndarray, \
        shape (n_unique_labels, )

    specificity : float (if ``average`` = None) or ndarray, \
        shape (n_unique_labels, )

    support : int (if ``average`` = None) or ndarray, \
        shape (n_unique_labels, )
        The number of occurrences of each label in ``y_true``.

    References
    ----------
    .. [1] `Wikipedia entry for the Sensitivity and specificity
           <https://en.wikipedia.org/wiki/Sensitivity_and_specificity>`_

    Examples
    --------
    >>> import numpy as np
    >>> from imblearn.metrics import sensitivity_specificity_support
    >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
    >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
    >>> sensitivity_specificity_support(y_true, y_pred, average='macro')
    (0.33333333333333331, 0.66666666666666663, None)
    >>> sensitivity_specificity_support(y_true, y_pred, average='micro')
    (0.33333333333333331, 0.66666666666666663, None)
    >>> sensitivity_specificity_support(y_true, y_pred, average='weighted')
    (0.33333333333333331, 0.66666666666666663, None)

    """
    average_options = (None, 'micro', 'macro', 'weighted', 'samples')
    if average not in average_options and average != 'binary':
        raise ValueError('average has to be one of ' + str(average_options))

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    present_labels = unique_labels(y_true, y_pred)

    if average == 'binary':
        if y_type == 'binary':
            if pos_label not in present_labels:
                if len(present_labels) < 2:
                    # Only negative labels
                    return (0., 0., 0)
                else:
                    raise ValueError("pos_label=%r is not a valid label: %r" %
                                     (pos_label, present_labels))
            labels = [pos_label]
        else:
            raise ValueError("Target is %s but average='binary'. Please "
                             "choose another average setting." % y_type)
    elif pos_label not in (None, 1):
        warnings.warn(
            "Note that pos_label (set to %r) is ignored when "
            "average != 'binary' (got %r). You may use "
            "labels=[pos_label] to specify a single positive class." %
            (pos_label, average), UserWarning)

    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    # Calculate tp_sum, pred_sum, true_sum ###

    if y_type.startswith('multilabel'):
        raise ValueError('imblearn does not support multilabel')
    elif average == 'samples':
        raise ValueError("Sample-based precision, recall, fscore is "
                         "not meaningful outside multilabel "
                         "classification. See the accuracy_score instead.")
    else:
        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(
                tp_bins, weights=tp_bins_weights, minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(
                y_pred, weights=sample_weight, minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(
                y_true, weights=sample_weight, minlength=len(labels))

        # Compute the true negative
        tn_sum = y_true.size - (pred_sum + true_sum - tp_sum)

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]
        tn_sum = tn_sum[indices]

    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])
        tn_sum = np.array([tn_sum.sum()])

    # Finally, we have all our sufficient statistics. Divide! #

    with np.errstate(divide='ignore', invalid='ignore'):
        # Divide, and on zero-division, set scores to 0 and warn:

        # Oddly, we may get an "invalid" rather than a "divide" error
        # here.
        specificity = _prf_divide(tn_sum, tn_sum + pred_sum - tp_sum,
                                  'specificity', 'predicted', average,
                                  warn_for)
        sensitivity = _prf_divide(tp_sum, true_sum, 'sensitivity', 'true',
                                  average, warn_for)

    # Average the results

    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    if average is not None:
        assert average != 'binary' or len(specificity) == 1
        specificity = np.average(specificity, weights=weights)
        sensitivity = np.average(sensitivity, weights=weights)
        true_sum = None  # return no support

    return sensitivity, specificity, true_sum
def sensitivity_specificity_support(y_true,
                                    y_pred,
                                    labels=None,
                                    pos_label=1,
                                    average=None,
                                    warn_for=('sensitivity', 'specificity'),
                                    sample_weight=None):
    """Compute sensitivity, specificity, and support for each class

    The sensitivity is the ratio ``tp / (tp + fn)`` where ``tp`` is the number
    of true positives and ``fn`` the number of false negatives. The sensitivity
    quantifies the ability to avoid false negatives_[1].

    The specificity is the ratio ``tn / (tn + fp)`` where ``tn`` is the number
    of true negatives and ``fn`` the number of false negatives. The specificity
    quantifies the ability to avoid false positives_[1].

    The support is the number of occurrences of each class in ``y_true``.

    If ``pos_label is None`` and in binary classification, this function
    returns the average sensitivity and specificity if ``average``
    is one of ``'weighted'``.

    Parameters
    ----------
    y_true : ndarray, shape (n_samples, )
        Ground truth (correct) target values.

    y_pred : ndarray, shape (n_samples, )
        Estimated targets as returned by a classifier.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

    pos_label : str or int, optional (default=1)
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : str or None, optional (default=None)
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).
    warn_for : tuple or set, for internal use
        This determines which warnings will be made in the case that this
        function is being used to return only one of its metrics.

    sample_weight : ndarray, shape (n_samples, )
        Sample weights.

    Returns
    -------
    sensitivity : float (if ``average`` = None) or ndarray, \
        shape (n_unique_labels, )

    specificity : float (if ``average`` = None) or ndarray, \
        shape (n_unique_labels, )

    support : int (if ``average`` = None) or ndarray, \
        shape (n_unique_labels, )
        The number of occurrences of each label in ``y_true``.

    Examples
    --------

    References
    ----------
    .. [1] `Wikipedia entry for the Sensitivity and specificity
           <https://en.wikipedia.org/wiki/Sensitivity_and_specificity>`_

    """
    average_options = (None, 'micro', 'macro', 'weighted', 'samples')
    if average not in average_options and average != 'binary':
        raise ValueError('average has to be one of ' + str(average_options))

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    present_labels = unique_labels(y_true, y_pred)

    if average == 'binary':
        if y_type == 'binary':
            if pos_label not in present_labels:
                if len(present_labels) < 2:
                    # Only negative labels
                    return (0., 0., 0)
                else:
                    raise ValueError("pos_label=%r is not a valid label: %r" %
                                     (pos_label, present_labels))
            labels = [pos_label]
        else:
            raise ValueError("Target is %s but average='binary'. Please "
                             "choose another average setting." % y_type)
    elif pos_label not in (None, 1):
        warnings.warn(
            "Note that pos_label (set to %r) is ignored when "
            "average != 'binary' (got %r). You may use "
            "labels=[pos_label] to specify a single positive class." %
            (pos_label, average), UserWarning)

    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    # Calculate tp_sum, pred_sum, true_sum ###

    if y_type.startswith('multilabel'):
        raise ValueError('imblearn does not support multilabel')
    elif average == 'samples':
        raise ValueError("Sample-based precision, recall, fscore is "
                         "not meaningful outside multilabel "
                         "classification. See the accuracy_score instead.")
    else:
        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins,
                                 weights=tp_bins_weights,
                                 minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred,
                                   weights=sample_weight,
                                   minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true,
                                   weights=sample_weight,
                                   minlength=len(labels))

        # Compute the true negative
        tn_sum = y_true.size - (pred_sum + true_sum - tp_sum)

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]
        tn_sum = tn_sum[indices]

    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])
        tn_sum = np.array([tn_sum.sum()])

    # Finally, we have all our sufficient statistics. Divide! #

    with np.errstate(divide='ignore', invalid='ignore'):
        # Divide, and on zero-division, set scores to 0 and warn:

        # Oddly, we may get an "invalid" rather than a "divide" error
        # here.
        specificity = _prf_divide(tn_sum, tn_sum + pred_sum - tp_sum,
                                  'specificity', 'predicted', average,
                                  warn_for)
        sensitivity = _prf_divide(tp_sum, true_sum, 'sensitivity', 'true',
                                  average, warn_for)

    # Average the results

    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    if average is not None:
        assert average != 'binary' or len(specificity) == 1
        specificity = np.average(specificity, weights=weights)
        sensitivity = np.average(sensitivity, weights=weights)
        true_sum = None  # return no support

    return sensitivity, specificity, true_sum
Example #20
0
def confusion_matrix_2021(y_true, y_pred, *, labels=None, sample_weight=None,
                     normalize=None):
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if y_type not in ("binary", "multiclass"):
        raise ValueError("%s is not supported" % y_type)

    if labels is None:
        labels = unique_labels(y_true, y_pred)
    else:
        labels = np.asarray(labels)
        n_labels = labels.size
        if n_labels == 0:
            raise ValueError("'labels' should contains at least one label.")
        elif y_true.size == 0:
            return np.zeros((n_labels, n_labels), dtype=int)
        elif np.all([l not in y_true for l in labels]):
            raise ValueError("At least one label specified must be in y_true")

    if sample_weight is None:
        sample_weight = np.ones(y_true.shape[0], dtype=np.int64)
    else:
        sample_weight = np.asarray(sample_weight)

    check_consistent_length(y_true, y_pred, sample_weight)

    if normalize not in ['true', 'pred', 'all', None]:
        raise ValueError("normalize must be one of {'true', 'pred', "
                         "'all', None}")

    n_labels = labels.size
    label_to_ind = {y: x for x, y in enumerate(labels)}
    # convert yt, yp into index
    y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred])
    y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true])

    # intersect y_pred, y_true with labels, eliminate items not in labels
    ind = np.logical_and(y_pred < n_labels, y_true < n_labels)
    y_pred = y_pred[ind]
    y_true = y_true[ind]
    # also eliminate weights of eliminated items
    sample_weight = sample_weight[ind]

    # Choose the accumulator dtype to always have high precision
    if sample_weight.dtype.kind in {'i', 'u', 'b'}:
        dtype = np.int64
    else:
        dtype = np.float64

    cm = coo_matrix((sample_weight, (y_true, y_pred)),
                    shape=(n_labels, n_labels), dtype=dtype,
                    ).toarray()

    with np.errstate(all='ignore'):
        if normalize == 'true':
            cm = cm / cm.sum(axis=1, keepdims=True)
        elif normalize == 'pred':
            cm = cm / cm.sum(axis=0, keepdims=True)
        elif normalize == 'all':
            cm = cm / cm.sum()
        cm = np.nan_to_num(cm)

    return cm
Example #21
0
def test__check_targets():
    # Check that _check_targets correctly merges target types, squeezes
    # output and fails if input lengths differ.
    IND = 'multilabel-indicator'
    SEQ = 'multilabel-sequences'
    MC = 'multiclass'
    BIN = 'binary'
    CNT = 'continuous'
    MMC = 'multiclass-multioutput'
    MCN = 'continuous-multioutput'
    # all of length 3
    EXAMPLES = [
        (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])),
        # must not be considered binary
        (IND, np.array([[0, 1], [1, 0], [1, 1]])),
        (SEQ, [[2, 3], [1], [3]]),
        (MC, [2, 3, 1]),
        (BIN, [0, 1, 1]),
        (CNT, [0., 1.5, 1.]),
        (MC, np.array([[2], [3], [1]])),
        (BIN, np.array([[0], [1], [1]])),
        (CNT, np.array([[0.], [1.5], [1.]])),
        (MMC, np.array([[0, 2], [1, 3], [2, 3]])),
        (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])),
    ]
    # expected type given input types, or None for error
    # (types will be tried in either order)
    EXPECTED = {
        (IND, IND): IND,
        (SEQ, SEQ): IND,
        (MC, MC): MC,
        (BIN, BIN): BIN,

        (IND, SEQ): None,
        (MC, SEQ): None,
        (BIN, SEQ): None,
        (MC, IND): None,
        (BIN, IND): None,
        (BIN, MC): MC,

        # Disallowed types
        (CNT, CNT): None,
        (MMC, MMC): None,
        (MCN, MCN): None,
        (IND, CNT): None,
        (SEQ, CNT): None,
        (MC, CNT): None,
        (BIN, CNT): None,
        (MMC, CNT): None,
        (MCN, CNT): None,
        (IND, MMC): None,
        (SEQ, MMC): None,
        (MC, MMC): None,
        (BIN, MMC): None,
        (MCN, MMC): None,
        (IND, MCN): None,
        (SEQ, MCN): None,
        (MC, MCN): None,
        (BIN, MCN): None,
    }

    for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2):
        try:
            expected = EXPECTED[type1, type2]
        except KeyError:
            expected = EXPECTED[type2, type1]
        if expected is None:
            assert_raises(ValueError, _check_targets, y1, y2)

            if type1 != type2:
                assert_raise_message(
                    ValueError,
                    "Can't handle mix of {0} and {1}".format(type1, type2),
                    _check_targets, y1, y2)

            else:
                if type1 not in (BIN, MC, SEQ, IND):
                    assert_raise_message(ValueError,
                                         "{0} is not supported".format(type1),
                                         _check_targets, y1, y2)

        else:
            merged_type, y1out, y2out = _check_targets(y1, y2)
            assert_equal(merged_type, expected)
            if merged_type.startswith('multilabel'):
                assert_equal(y1out.format, 'csr')
                assert_equal(y2out.format, 'csr')
            else:
                assert_array_equal(y1out, np.squeeze(y1))
                assert_array_equal(y2out, np.squeeze(y2))
            assert_raises(ValueError, _check_targets, y1[:-1], y2)
Example #22
0
def precision_recall_fscore_support(y_true,
                                    y_pred,
                                    beta=1.0,
                                    labels=None,
                                    pos_label=1,
                                    average=None,
                                    warn_for=('precision', 'recall',
                                              'f-score'),
                                    sample_weight=None):
    """Compute precision, recall, F-measure and support for each class

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The F-beta score can be interpreted as a weighted harmonic mean of
    the precision and recall, where an F-beta score reaches its best
    value at 1 and worst score at 0.

    The F-beta score weights recall more than precision by a factor of
    ``beta``. ``beta == 1.0`` means recall and precision are equally important.

    The support is the number of occurrences of each class in ``y_true``.

    If ``pos_label is None`` and in binary classification, this function
    returns the average precision, recall and F-measure if ``average``
    is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.

    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.

    beta : float, 1.0 by default
        The strength of recall versus precision in the F-score.

    labels : list, optional
        The set of labels to include when ``average != 'binary'``, and their
        order if ``average is None``. Labels present in the data can be
        excluded, for example to calculate a multiclass average ignoring a
        majority negative class, while labels not present in the data will
        result in 0 components in a macro average. For multilabel targets,
        labels are column indices. By default, all labels in ``y_true`` and
        ``y_pred`` are used in sorted order.

    pos_label : str or int, 1 by default
        The class to report if ``average='binary'`` and the data is binary.
        If the data are multiclass or multilabel, this will be ignored;
        setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
        scores for that label only.

    average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \
                       'weighted']
        If ``None``, the scores for each class are returned. Otherwise, this
        determines the type of averaging performed on the data:

        ``'binary'``:
            Only report results for the class specified by ``pos_label``.
            This is applicable only if targets (``y_{true,pred}``) are binary.
        ``'micro'``:
            Calculate metrics globally by counting the total true positives,
            false negatives and false positives.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label). This
            alters 'macro' to account for label imbalance; it can result in an
            F-score that is not between precision and recall.
        ``'samples'``:
            Calculate metrics for each instance, and find their average (only
            meaningful for multilabel classification where this differs from
            :func:`accuracy_score`).

    warn_for : tuple or set, for internal use
        This determines which warnings will be made in the case that this
        function is being used to return only one of its metrics.

    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.

    Returns
    -------
    precision : float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    recall : float (if average is not None) or array of float, , shape =\
        [n_unique_labels]

    fbeta_score : float (if average is not None) or array of float, shape =\
        [n_unique_labels]

    support : int (if average is not None) or array of int, shape =\
        [n_unique_labels]
        The number of occurrences of each label in ``y_true``.

    References
    ----------
    .. [1] `Wikipedia entry for the Precision and recall
           <https://en.wikipedia.org/wiki/Precision_and_recall>`_

    .. [2] `Wikipedia entry for the F1-score
           <https://en.wikipedia.org/wiki/F1_score>`_

    .. [3] `Discriminative Methods for Multi-labeled Classification Advances
           in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu
           Godbole, Sunita Sarawagi
           <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_

    Examples
    --------
    >>> from sklearn.metrics import precision_recall_fscore_support
    >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
    >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
    >>> precision_recall_fscore_support(y_true, y_pred, average='macro')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='micro')
    ... # doctest: +ELLIPSIS
    (0.33..., 0.33..., 0.33..., None)
    >>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
    ... # doctest: +ELLIPSIS
    (0.22..., 0.33..., 0.26..., None)

    It is possible to compute per-label precisions, recalls, F1-scores and
    supports instead of averaging:

    >>> precision_recall_fscore_support(y_true, y_pred, average=None,
    ... labels=['pig', 'dog', 'cat'])
    ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE
    (array([0.        , 0.        , 0.66...]),
     array([0., 0., 1.]), array([0. , 0. , 0.8]),
     array([2, 2, 2]))

    """
    average_options = (None, 'micro', 'macro', 'weighted', 'samples')
    if average not in average_options and average != 'binary':
        raise ValueError('average has to be one of ' + str(average_options))
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    check_consistent_length(y_true, y_pred, sample_weight)
    present_labels = unique_labels(y_true, y_pred)

    if average == 'binary':
        if y_type == 'binary':
            if pos_label not in present_labels:
                if len(present_labels) < 2:
                    # Only negative labels
                    return (0., 0., 0., 0)
                else:
                    raise ValueError("pos_label=%r is not a valid label: %r" %
                                     (pos_label, present_labels))
            labels = [pos_label]
        else:
            raise ValueError("Target is %s but average='binary'. Please "
                             "choose another average setting." % y_type)
    elif pos_label not in (None, 1):
        warnings.warn(
            "Note that pos_label (set to %r) is ignored when "
            "average != 'binary' (got %r). You may use "
            "labels=[pos_label] to specify a single positive class." %
            (pos_label, average), UserWarning)

    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    # Calculate tp_sum, pred_sum, true_sum ###

    if y_type.startswith('multilabel'):
        sum_axis = 1 if average == 'samples' else 0

        # All labels are index integers for multilabel.
        # Select labels:
        if not np.all(labels == present_labels):
            if np.max(labels) > np.max(present_labels):
                raise ValueError('All labels must be in [0, n labels). '
                                 'Got %d > %d' %
                                 (np.max(labels), np.max(present_labels)))
            if np.min(labels) < 0:
                raise ValueError('All labels must be in [0, n labels). '
                                 'Got %d < 0' % np.min(labels))

        if n_labels is not None:
            y_true = y_true[:, labels[:n_labels]]
            y_pred = y_pred[:, labels[:n_labels]]

        # calculate weighted counts
        true_and_pred = y_true.multiply(y_pred)
        tp_sum = count_nonzero(true_and_pred,
                               axis=sum_axis,
                               sample_weight=sample_weight)
        pred_sum = count_nonzero(y_pred,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)
        true_sum = count_nonzero(y_true,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)

    elif average == 'samples':
        raise ValueError("Sample-based precision, recall, fscore is "
                         "not meaningful outside multilabel "
                         "classification. See the accuracy_score instead.")
    else:
        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins,
                                 weights=tp_bins_weights,
                                 minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred,
                                   weights=sample_weight,
                                   minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true,
                                   weights=sample_weight,
                                   minlength=len(labels))

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]

    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])

    # Finally, we have all our sufficient statistics. Divide! #

    beta2 = beta**2
    with np.errstate(divide='ignore', invalid='ignore'):
        # Divide, and on zero-division, set scores to 0 and warn:

        # Oddly, we may get an "invalid" rather than a "divide" error
        # here.
        precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted',
                                average, warn_for)
        recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average,
                             warn_for)
        # Don't need to warn for F: either P or R warned, or tp == 0 where pos
        # and true are nonzero, in which case, F is well-defined and zero
        f_score = ((1 + beta2) * precision * recall /
                   (beta2 * precision + recall))
        f_score[tp_sum == 0] = 0.0

    # Average the results

    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    if average is not None:
        assert average != 'binary' or len(precision) == 1
        precision = np.average(precision, weights=weights)
        recall = np.average(recall, weights=weights)
        f_score = np.average(f_score, weights=weights)
        true_sum = None  # return no support

    return precision, recall, f_score, true_sum
def test__check_targets():
    # Check that _check_targets correctly merges target types, squeezes
    # output and fails if input lengths differ.
    IND = 'multilabel-indicator'
    MC = 'multiclass'
    BIN = 'binary'
    CNT = 'continuous'
    MMC = 'multiclass-multioutput'
    MCN = 'continuous-multioutput'
    # all of length 3
    EXAMPLES = [
        (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])),
        # must not be considered binary
        (IND, np.array([[0, 1], [1, 0], [1, 1]])),
        (MC, [2, 3, 1]),
        (BIN, [0, 1, 1]),
        (CNT, [0., 1.5, 1.]),
        (MC, np.array([[2], [3], [1]])),
        (BIN, np.array([[0], [1], [1]])),
        (CNT, np.array([[0.], [1.5], [1.]])),
        (MMC, np.array([[0, 2], [1, 3], [2, 3]])),
        (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])),
    ]
    # expected type given input types, or None for error
    # (types will be tried in either order)
    EXPECTED = {
        (IND, IND): IND,
        (MC, MC): MC,
        (BIN, BIN): BIN,

        (MC, IND): None,
        (BIN, IND): None,
        (BIN, MC): MC,

        # Disallowed types
        (CNT, CNT): None,
        (MMC, MMC): None,
        (MCN, MCN): None,
        (IND, CNT): None,
        (MC, CNT): None,
        (BIN, CNT): None,
        (MMC, CNT): None,
        (MCN, CNT): None,
        (IND, MMC): None,
        (MC, MMC): None,
        (BIN, MMC): None,
        (MCN, MMC): None,
        (IND, MCN): None,
        (MC, MCN): None,
        (BIN, MCN): None,
    }

    for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2):
        try:
            expected = EXPECTED[type1, type2]
        except KeyError:
            expected = EXPECTED[type2, type1]
        if expected is None:
            assert_raises(ValueError, _check_targets, y1, y2)

            if type1 != type2:
                assert_raise_message(
                    ValueError,
                    "Can't handle mix of {0} and {1}".format(type1, type2),
                    _check_targets, y1, y2)

            else:
                if type1 not in (BIN, MC, IND):
                    assert_raise_message(ValueError,
                                         "{0} is not supported".format(type1),
                                         _check_targets, y1, y2)

        else:
            merged_type, y1out, y2out = _check_targets(y1, y2)
            assert_equal(merged_type, expected)
            if merged_type.startswith('multilabel'):
                assert_equal(y1out.format, 'csr')
                assert_equal(y2out.format, 'csr')
            else:
                assert_array_equal(y1out, np.squeeze(y1))
                assert_array_equal(y2out, np.squeeze(y2))
            assert_raises(ValueError, _check_targets, y1[:-1], y2)

    # Make sure seq of seq is not supported
    y1 = [(1, 2,), (0, 2, 3)]
    y2 = [(2,), (0, 2,)]
    msg = ('You appear to be using a legacy multi-label data representation. '
           'Sequence of sequences are no longer supported; use a binary array'
           ' or sparse matrix instead.')
    assert_raise_message(ValueError, msg, _check_targets, y1, y2)
Example #24
0
def multilabel_confusion_matrix(y_true,
                                y_pred,
                                sample_weight=None,
                                labels=None,
                                samplewise=False):
    """Compute a confusion matrix for each class or sample
    .. versionadded:: 0.21
    Compute class-wise (default) or sample-wise (samplewise=True) multilabel
    confusion matrix to evaluate the accuracy of a classification, and output
    confusion matrices for each class or sample.
    In multilabel confusion matrix :math:`MCM`, the count of true negatives
    is :math:`MCM_{:,0,0}`, false negatives is :math:`MCM_{:,1,0}`,
    true positives is :math:`MCM_{:,1,1}` and false positives is
    :math:`MCM_{:,0,1}`.
    Multiclass data will be treated as if binarized under a one-vs-rest
    transformation. Returned confusion matrices will be in the order of
    sorted unique labels in the union of (y_true, y_pred).
    Read more in the :ref:`User Guide <multilabel_confusion_matrix>`.
    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        of shape (n_samples, n_outputs) or (n_samples,)
        Ground truth (correct) target values.
    y_pred : 1d array-like, or label indicator array / sparse matrix
        of shape (n_samples, n_outputs) or (n_samples,)
        Estimated targets as returned by a classifier
    sample_weight : array-like of shape = (n_samples,), optional
        Sample weights
    labels : array-like
        A list of classes or column indices to select some (or to force
        inclusion of classes absent from the data)
    samplewise : bool, default=False
        In the multilabel case, this calculates a confusion matrix per sample
    Returns
    -------
    multi_confusion : array, shape (n_outputs, 2, 2)
        A 2x2 confusion matrix corresponding to each output in the input.
        When calculating class-wise multi_confusion (default), then
        n_outputs = n_labels; when calculating sample-wise multi_confusion
        (samplewise=True), n_outputs = n_samples. If ``labels`` is defined,
        the results will be returned in the order specified in ``labels``,
        otherwise the results will be returned in sorted order by default.
    See also
    --------
    confusion_matrix
    Notes
    -----
    The multilabel_confusion_matrix calculates class-wise or sample-wise
    multilabel confusion matrices, and in multiclass tasks, labels are
    binarized under a one-vs-rest way; while confusion_matrix calculates
    one confusion matrix for confusion between every two classes.
    Examples
    --------
    Multilabel-indicator case:
    >>> import numpy as np
    >>> from sklearn.metrics import multilabel_confusion_matrix
    >>> y_true = np.array([[1, 0, 1],
    ...                    [0, 1, 0]])
    >>> y_pred = np.array([[1, 0, 0],
    ...                    [0, 1, 1]])
    >>> multilabel_confusion_matrix(y_true, y_pred)
    array([[[1, 0],
            [0, 1]],
    <BLANKLINE>
           [[1, 0],
            [0, 1]],
    <BLANKLINE>
           [[0, 1],
            [1, 0]]])
    Multiclass case:
    >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
    >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
    >>> multilabel_confusion_matrix(y_true, y_pred,
    ...                             labels=["ant", "bird", "cat"])
    array([[[3, 1],
            [0, 2]],
    <BLANKLINE>
           [[5, 0],
            [1, 0]],
    <BLANKLINE>
           [[2, 1],
            [1, 2]]])
    """
    y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
    check_consistent_length(y_true, y_pred, sample_weight)

    if y_type not in ("binary", "multiclass", "multilabel-indicator"):
        raise ValueError("%s is not supported" % y_type)

    present_labels = unique_labels(y_true, y_pred)
    if labels is None:
        labels = present_labels
        n_labels = None
    else:
        n_labels = len(labels)
        labels = np.hstack(
            [labels,
             np.setdiff1d(present_labels, labels, assume_unique=True)])

    if y_true.ndim == 1:
        if samplewise:
            raise ValueError("Samplewise metrics are not available outside of "
                             "multilabel classification.")

        le = LabelEncoder()
        le.fit(labels)
        y_true = le.transform(y_true)
        y_pred = le.transform(y_pred)
        sorted_labels = le.classes_

        # labels are now from 0 to len(labels) - 1 -> use bincount
        tp = y_true == y_pred
        tp_bins = y_true[tp]
        if sample_weight is not None:
            tp_bins_weights = np.asarray(sample_weight)[tp]
        else:
            tp_bins_weights = None

        if len(tp_bins):
            tp_sum = np.bincount(tp_bins,
                                 weights=tp_bins_weights,
                                 minlength=len(labels))
        else:
            # Pathological case
            true_sum = pred_sum = tp_sum = np.zeros(len(labels))
        if len(y_pred):
            pred_sum = np.bincount(y_pred,
                                   weights=sample_weight,
                                   minlength=len(labels))
        if len(y_true):
            true_sum = np.bincount(y_true,
                                   weights=sample_weight,
                                   minlength=len(labels))

        # Retain only selected labels
        indices = np.searchsorted(sorted_labels, labels[:n_labels])
        tp_sum = tp_sum[indices]
        true_sum = true_sum[indices]
        pred_sum = pred_sum[indices]

    else:
        sum_axis = 1 if samplewise else 0

        # All labels are index integers for multilabel.
        # Select labels:
        if not np.array_equal(labels, present_labels):
            if np.max(labels) > np.max(present_labels):
                raise ValueError('All labels must be in [0, n labels) for '
                                 'multilabel targets. '
                                 'Got %d > %d' %
                                 (np.max(labels), np.max(present_labels)))
            if np.min(labels) < 0:
                raise ValueError('All labels must be in [0, n labels) for '
                                 'multilabel targets. '
                                 'Got %d < 0' % np.min(labels))

        if n_labels is not None:
            y_true = y_true[:, labels[:n_labels]]
            y_pred = y_pred[:, labels[:n_labels]]

        # calculate weighted counts
        true_and_pred = y_true.multiply(y_pred)
        tp_sum = count_nonzero(true_and_pred,
                               axis=sum_axis,
                               sample_weight=sample_weight)
        pred_sum = count_nonzero(y_pred,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)
        true_sum = count_nonzero(y_true,
                                 axis=sum_axis,
                                 sample_weight=sample_weight)

    fp = pred_sum - tp_sum
    fn = true_sum - tp_sum
    tp = tp_sum

    if sample_weight is not None and samplewise:
        sample_weight = np.array(sample_weight)
        tp = np.array(tp)
        fp = np.array(fp)
        fn = np.array(fn)
        tn = sample_weight * y_true.shape[1] - tp - fp - fn
    elif sample_weight is not None:
        tn = sum(sample_weight) - tp - fp - fn
    elif samplewise:
        tn = y_true.shape[1] - tp - fp - fn
    else:
        tn = y_true.shape[0] - tp - fp - fn

    return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)
Example #25
0
def sk_clf_report(y_true: list, y_pred: list, labels: list = None,
                  target_names: list = None, sample_weight: list = None,
                  digits: int = 2, output_dict: bool = False) -> str:
    """Build a text report showing the main classification metrics

    Read more in the :ref:`User Guide <classification_report>`.

    Parameters
    ----------
    y_true : 1d array-like, or label indicator array / sparse matrix
        Ground truth (correct) target values.
    y_pred : 1d array-like, or label indicator array / sparse matrix
        Estimated targets as returned by a classifier.
    labels : array, shape = [n_labels]
        Optional list of label indices to include in the report.
    target_names : list of strings
        Optional display names matching the labels (same order).
    sample_weight : array-like of shape = [n_samples], optional
        Sample weights.
    digits : int
        Number of digits for formatting output floating point values.
        When ``output_dict`` is ``True``, this will be ignored and the
        returned values will not be rounded.
    output_dict : bool (default = False)
        If True, return output as dict

    Returns
    -------
    report : string / dict
        Text summary of the precision, recall, F1 score for each class.
        Dictionary returned if output_dict is True. Dictionary has the
        following structure::
            {'label 1': {'precision':0.5,
                         'recall':1.0,
                         'f1-score':0.67,
                         'support':1},
             'label 2': { ... },
              ...
            }
        The reported averages include micro average (averaging the
        total true positives, false negatives and false positives), macro
        average (averaging the unweighted mean per label), weighted average
        (averaging the support-weighted mean per label) and sample average
        (only for multilabel classification). See also
        :func:`precision_recall_fscore_support` for more details on averages.
        Note that in binary classification, recall of the positive class
        is also known as "sensitivity"; recall of the negative class is
        "specificity".

    Examples
    --------
    >>> from sklearn.metrics import classification_report
    >>> y_true = [0, 1, 2, 2, 2]
    >>> y_pred = [0, 0, 2, 2, 1]
    >>> target_names = ['class 0', 'class 1', 'class 2']
    >>> print(classification_report(y_true, y_pred, target_names=target_names))
                  precision    recall  f1-score   support
    <BLANKLINE>
         class 0       0.50      1.00      0.67         1
         class 1       0.00      0.00      0.00         1
         class 2       1.00      0.67      0.80         3
    <BLANKLINE>
       micro avg       0.60      0.60      0.60         5
       macro avg       0.50      0.56      0.49         5
    weighted avg       0.70      0.60      0.61         5
    <BLANKLINE>
    """

    y_type, y_true, y_pred = _check_targets(y_true, y_pred)

    labels_given = True
    if labels is None:
        labels = unique_labels(y_true, y_pred)
        labels_given = False
    else:
        labels = np.asarray(labels)

    if target_names is not None and len(labels) != len(target_names):
        if labels_given:
            warnings.warn(
                "labels size, {0}, does not match size of target_names, {1}"
                .format(len(labels), len(target_names))
            )
        else:
            raise ValueError(
                "Number of classes, {0}, does not match size of "
                "target_names, {1}. Try specifying the labels "
                "parameter".format(len(labels), len(target_names))
            )
    if target_names is None:
        target_names = [u'%s' % l for l in labels]

    headers = ["precision", "recall", "f1-score", "support"]
    # compute per-class results without averaging
    p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
                                                  labels=labels,
                                                  average=None,
                                                  sample_weight=sample_weight)
    rows = zip(target_names, p, r, f1, s)

    if y_type.startswith('multilabel'):
        average_options = ('micro', 'macro', 'weighted', 'samples')
    else:
        average_options = ('micro', 'macro', 'weighted')

    if output_dict:
        report_dict = {label[0]: label[1:] for label in rows}
        for label, scores in report_dict.items():
            report_dict[label] = dict(zip(headers,
                                          [i.item() for i in scores]))
    else:
        longest_last_line_heading = 'weighted avg'
        name_width = max(len(cn) for cn in target_names)
        width = max(name_width, len(longest_last_line_heading), digits)
        head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers)
        report = head_fmt.format(u'', *headers, width=width)
        report += u'\n\n'
        row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n'
        for row in rows:
            report += row_fmt.format(*row, width=width, digits=digits)
        report += u'\n'

    # compute all applicable averages
    for average in average_options:
        line_heading = average + ' avg'
        # compute averages with specified averaging method
        avg_p, avg_r, avg_f1, _ = precision_recall_fscore_support(
            y_true, y_pred, labels=labels,
            average=average, sample_weight=sample_weight)
        avg = [avg_p, avg_r, avg_f1, np.sum(s)]

        if output_dict:
            report_dict[line_heading] = dict(
                zip(headers, [i.item() for i in avg]))
        else:
            report += row_fmt.format(line_heading, *avg,
                                     width=width, digits=digits)

    if output_dict:
        return report_dict
    else:
        return report