Example #1
0
def get_scores(y_true,y_pred):
    brier_score = brier_score_loss(y_true,y_pred)
    log_score = log_loss(y_true,y_pred)
    roc_score = roc_auc_score(y_true, y_pred)
    pr_score = average_precision_score(y_true,y_pred)
    r2score = r2_score(y_true,y_pred)
    return math.sqrt(brier_score),log_score,roc_score,pr_score,r2score
Example #2
0
def get_scores(shots):
    y_true = [shot.result for shot in shots]
    y_pred = [shot.pred for shot in shots]
    brier_score = brier_score_loss(y_true,y_pred)
    log_score = log_loss(y_true,y_pred)
    roc_score = roc_auc_score(y_true, y_pred)
    pr_score = average_precision_score(y_true,y_pred)
    r2score = r2_score(y_true,y_pred)
    return math.sqrt(brier_score),log_score,roc_score,pr_score,r2score
Example #3
0
def get_classification_metrics(ground_truth_labels, predicted_labels):
    classification_metric_dict = dict({})
    classification_metric_dict['accuracy'] = accuracy_score(
        ground_truth_labels, predicted_labels)
    classification_metric_dict['precision'] = precision_score(
        ground_truth_labels, predicted_labels, average='weighted')
    classification_metric_dict['recall'] = recall_score(ground_truth_labels,
                                                        predicted_labels,
                                                        average='weighted')
    classification_metric_dict['f1_score'] = f1_score(ground_truth_labels,
                                                      predicted_labels,
                                                      average='weighted')
    classification_metric_dict['brier_score_loss'] = brier_score_loss(
        ground_truth_labels, predicted_labels)
    classification_metric_dict['matthews_corr_coef'] = matthews_corrcoef(
        ground_truth_labels, predicted_labels)
    classification_metric_dict['jaccard_score'] = jaccard_score(
        ground_truth_labels, predicted_labels, average='weighted')
    classification_metric_dict['cohen_kappa_score'] = cohen_kappa_score(
        ground_truth_labels, predicted_labels)

    return classification_metric_dict