Example #1
0
def test_kd_tree_query_radius(n_samples=100, n_features=10):
    rng = check_random_state(0)
    X = 2 * rng.random_sample(size=(n_samples, n_features)) - 1
    query_pt = np.zeros(n_features, dtype=float)

    eps = 1E-15  # roundoff error can cause test to fail
    kdt = KDTree(X, leaf_size=5)
    rad = np.sqrt(((X - query_pt)**2).sum(1))

    for r in np.linspace(rad[0], rad[-1], 100):
        ind = kdt.query_radius([query_pt], r + eps)[0]
        i = np.where(rad <= r + eps)[0]

        ind.sort()
        i.sort()

        assert_array_almost_equal(i, ind)
Example #2
0
def test_kd_tree_query_radius_distance(n_samples=100, n_features=10):
    rng = check_random_state(0)
    X = 2 * rng.random_sample(size=(n_samples, n_features)) - 1
    query_pt = np.zeros(n_features, dtype=float)

    eps = 1E-15  # roundoff error can cause test to fail
    kdt = KDTree(X, leaf_size=5)
    rad = np.sqrt(((X - query_pt)**2).sum(1))

    for r in np.linspace(rad[0], rad[-1], 100):
        ind, dist = kdt.query_radius([query_pt], r + eps, return_distance=True)

        ind = ind[0]
        dist = dist[0]

        d = np.sqrt(((query_pt - X[ind])**2).sum(1))

        assert_array_almost_equal(d, dist)