Example #1
0
class LinearSVRImpl():
    def __init__(self,
                 epsilon=0.0,
                 tol=0.0001,
                 C=1.0,
                 loss='epsilon_insensitive',
                 fit_intercept=True,
                 intercept_scaling=1.0,
                 dual=True,
                 verbose=0,
                 random_state=None,
                 max_iter=1000):
        self._hyperparams = {
            'epsilon': epsilon,
            'tol': tol,
            'C': C,
            'loss': loss,
            'fit_intercept': fit_intercept,
            'intercept_scaling': intercept_scaling,
            'dual': dual,
            'verbose': verbose,
            'random_state': random_state,
            'max_iter': max_iter
        }

    def fit(self, X, y=None):
        self._sklearn_model = SKLModel(**self._hyperparams)
        if (y is not None):
            self._sklearn_model.fit(X, y)
        else:
            self._sklearn_model.fit(X)
        return self

    def predict(self, X):
        return self._sklearn_model.predict(X)
        X = scalerX.transform(X)
        
        #print(userDF.userData)

        y =userFeature.ix[:,feature]
        
        lars_cv = linear_model.LassoLarsCV(cv=6).fit(X,y)
        selector = feature_selection.SelectFromModel(lars_cv,prefit=True)
        
        X = selector.transform(X)
        
        selectors.append(selector)
        print(feature)
        print(X.shape)
        print(y.shape)
        clff.fit(X,y)
        
        clfPersonality.append(clff)
        i=i+1
    
    
    samples = inputTools.sampleInputPd(inputFile)
    
    lt.predictAgeLikesid(samples, clfAge, vectorizer= vectorizerA)
    lt.predictGenderLikesid(samples, clfGender,vectorizer= vectorizerG)
    

    samples.featureData.rename(columns={'userId':'userid'},inplace=True)
    personalityData = pd.merge(samples.featureData,samples.userData,on='userid',how= 'right')