Example #1
0
def test_run():
    x, y = get_iris(True)
    print_summary(x)

    x, y = get_boston()
    print_summary(x)

    x, y = get_titanic(True)
    print_summary(x)
Example #2
0
@author: mvanoudh
"""

#import numpy as np
import pandas as pd

from sklearn2.utils import split_xy, print_summary
from sklearn2.datasets import get_titanic_clean
from sklearn2.covariance import compute_correls

pd.options.display.width = 160

df = get_titanic_clean()['Fare Age Sex Embarked Pclass Survived'.split()]

print_summary(df)


def test1():
    return compute_correls(df)


def test2():
    return compute_correls(df, model='entropy')


def test3():
    return compute_correls(df, model='linear')


def test4():
Example #3
0
#from sklearn.decomposition import TruncatedSVD
from sklearn2.utils import TransformerWrap, PassThrought, todf
from sklearn2.utils import object_cols, numeric_cols

pd.options.display.width = 160

logging.basicConfig(format='%(asctime)s - %(name)s - %(message)s')
logging.getLogger().setLevel(level=logging.INFO)

seed(0)

x, y = get_titanic(True)
#x, y = get_iris()

print_summary(x)

ppl = Pipeline([
    ('in', ConstantInputer()), ("da", DateEncoder()),
    ('en',
     FeatureUnion([('nu',
                    Pipeline([('ft', FunctionTransformer()),
                              ("sc", TransformerWrap(StandardScaler()))])),
                   ('ca',
                    make_pipeline(FunctionTransformer(), SparseCatEncoder(),
                                  FunctionTransformer()))])),
    ('fi', make_union(SelectKBest2(), TruncatedSVD2()))
])

params = {
    'en__nu__ft__func': lambda x: x[numeric_cols(x)],
Example #4
0
def test_date_encoder():
    df = get_titanic()
    df.fillna(0, inplace=True)
    df2 = DateEncoder(ascategory=True).fit_transform(df)
    print_summary(df2)
Example #5
0
def test_run():
    df = pd.DataFrame({'a': [1, 2], 'b': ['bonjour x', 'hello y']})
    df['c'] = df.b.apply(lambda s: s.split(' '))
    print_summary(df)