Example #1
0
def test_enet_positive_constraint():
    X = [[-1], [0], [1]]
    y = [1, 0, -1]  # just a straight line with negative slope

    enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True)
    enet.fit(X, y)
    assert min(enet.coef_) >= 0
def test_sparse_coef():
    # Check that the sparse_coef property works
    clf = ElasticNet()
    clf.coef_ = [1, 2, 3]

    assert sp.isspmatrix(clf.sparse_coef_)
    assert clf.sparse_coef_.toarray().tolist()[0] == clf.coef_
Example #3
0
def test_enet_copy_X_True(check_input):
    X, y, _, _ = build_dataset()
    X = X.copy(order='F')

    original_X = X.copy()
    enet = ElasticNet(copy_X=True)
    enet.fit(X, y, check_input=check_input)

    assert_array_equal(original_X, X)
Example #4
0
def test_enet_float_precision():
    # Generate dataset
    X, y, X_test, y_test = build_dataset(n_samples=20, n_features=10)
    # Here we have a small number of iterations, and thus the
    # ElasticNet might not converge. This is to speed up tests

    for normalize in [True, False]:
        for fit_intercept in [True, False]:
            coef = {}
            intercept = {}
            for dtype in [np.float64, np.float32]:
                clf = ElasticNet(alpha=0.5,
                                 max_iter=100,
                                 precompute=False,
                                 fit_intercept=fit_intercept,
                                 normalize=normalize)

                X = dtype(X)
                y = dtype(y)
                ignore_warnings(clf.fit)(X, y)

                coef[('simple', dtype)] = clf.coef_
                intercept[('simple', dtype)] = clf.intercept_

                assert clf.coef_.dtype == dtype

                # test precompute Gram array
                Gram = X.T.dot(X)
                clf_precompute = ElasticNet(alpha=0.5,
                                            max_iter=100,
                                            precompute=Gram,
                                            fit_intercept=fit_intercept,
                                            normalize=normalize)
                ignore_warnings(clf_precompute.fit)(X, y)
                assert_array_almost_equal(clf.coef_, clf_precompute.coef_)
                assert_array_almost_equal(clf.intercept_,
                                          clf_precompute.intercept_)

                # test multi task enet
                multi_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
                clf_multioutput = MultiTaskElasticNet(
                    alpha=0.5,
                    max_iter=100,
                    fit_intercept=fit_intercept,
                    normalize=normalize)
                clf_multioutput.fit(X, multi_y)
                coef[('multi', dtype)] = clf_multioutput.coef_
                intercept[('multi', dtype)] = clf_multioutput.intercept_
                assert clf.coef_.dtype == dtype

            for v in ['simple', 'multi']:
                assert_array_almost_equal(coef[(v, np.float32)],
                                          coef[(v, np.float64)],
                                          decimal=4)
                assert_array_almost_equal(intercept[(v, np.float32)],
                                          intercept[(v, np.float64)],
                                          decimal=4)
Example #5
0
def test_warm_start():
    X, y, _, _ = build_dataset()
    clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True)
    ignore_warnings(clf.fit)(X, y)
    ignore_warnings(clf.fit)(X, y)  # do a second round with 5 iterations

    clf2 = ElasticNet(alpha=0.1, max_iter=10)
    ignore_warnings(clf2.fit)(X, y)
    assert_array_almost_equal(clf2.coef_, clf.coef_)
Example #6
0
def test_enet_copy_X_False_check_input_False():
    X, y, _, _ = build_dataset()
    X = X.copy(order='F')

    original_X = X.copy()
    enet = ElasticNet(copy_X=False)
    enet.fit(X, y, check_input=False)

    # No copying, X is overwritten
    assert np.any(np.not_equal(original_X, X))
Example #7
0
def test_n_clusters():
    # Test that n_clusters param works properly
    X, y = make_blobs(n_samples=100, centers=10)
    brc1 = Birch(n_clusters=10)
    brc1.fit(X)
    assert len(brc1.subcluster_centers_) > 10
    assert len(np.unique(brc1.labels_)) == 10

    # Test that n_clusters = Agglomerative Clustering gives
    # the same results.
    gc = AgglomerativeClustering(n_clusters=10)
    brc2 = Birch(n_clusters=gc)
    brc2.fit(X)
    assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
    assert_array_equal(brc1.labels_, brc2.labels_)

    # Test that the wrong global clustering step raises an Error.
    clf = ElasticNet()
    brc3 = Birch(n_clusters=clf)
    with pytest.raises(ValueError):
        brc3.fit(X)

    # Test that a small number of clusters raises a warning.
    brc4 = Birch(threshold=10000.)
    assert_warns(ConvergenceWarning, brc4.fit, X)
Example #8
0
def test_overrided_gram_matrix():
    X, y, _, _ = build_dataset(n_samples=20, n_features=10)
    Gram = X.T.dot(X)
    clf = ElasticNet(selection='cyclic', tol=1e-8, precompute=Gram)
    assert_warns_message(
        UserWarning, "Gram matrix was provided but X was centered"
        " to fit intercept, "
        "or X was normalized : recomputing Gram matrix.", clf.fit, X, y)
def test_normalize_option():
    # Check that the normalize option in enet works
    X = sp.csc_matrix([[-1], [0], [1]])
    y = [-1, 0, 1]
    clf_dense = ElasticNet(normalize=True)
    clf_sparse = ElasticNet(normalize=True)
    clf_dense.fit(X, y)
    X = sp.csc_matrix(X)
    clf_sparse.fit(X, y)
    assert_almost_equal(clf_dense.dual_gap_, 0)
    assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_)
def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive):
    n_samples, n_features, max_iter = 100, 100, 1000
    n_informative = 10

    X, y = make_sparse_data(n_samples,
                            n_features,
                            n_informative,
                            positive=positive)

    X_train, X_test = X[n_samples // 2:], X[:n_samples // 2]
    y_train, y_test = y[n_samples // 2:], y[:n_samples // 2]

    s_clf = ElasticNet(alpha=alpha,
                       l1_ratio=0.8,
                       fit_intercept=fit_intercept,
                       max_iter=max_iter,
                       tol=1e-7,
                       positive=positive,
                       warm_start=True)
    s_clf.fit(X_train, y_train)

    assert_almost_equal(s_clf.dual_gap_, 0, 4)
    assert s_clf.score(X_test, y_test) > 0.85

    # check the convergence is the same as the dense version
    d_clf = ElasticNet(alpha=alpha,
                       l1_ratio=0.8,
                       fit_intercept=fit_intercept,
                       max_iter=max_iter,
                       tol=1e-7,
                       positive=positive,
                       warm_start=True)
    d_clf.fit(X_train.toarray(), y_train)

    assert_almost_equal(d_clf.dual_gap_, 0, 4)
    assert d_clf.score(X_test, y_test) > 0.85

    assert_almost_equal(s_clf.coef_, d_clf.coef_, 5)
    assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5)

    # check that the coefs are sparse
    assert np.sum(s_clf.coef_ != 0.0) < 2 * n_informative
Example #11
0
def test_warm_start_convergence_with_regularizer_decrement():
    X, y = load_boston(return_X_y=True)

    # Train a model to converge on a lightly regularized problem
    final_alpha = 1e-5
    low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y)

    # Fitting a new model on a more regularized version of the same problem.
    # Fitting with high regularization is easier it should converge faster
    # in general.
    high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y)
    assert low_reg_model.n_iter_ > high_reg_model.n_iter_

    # Fit the solution to the original, less regularized version of the
    # problem but from the solution of the highly regularized variant of
    # the problem as a better starting point. This should also converge
    # faster than the original model that starts from zero.
    warm_low_reg_model = deepcopy(high_reg_model)
    warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha)
    warm_low_reg_model.fit(X, y)
    assert low_reg_model.n_iter_ > warm_low_reg_model.n_iter_
Example #12
0
def test_sparse_input_convergence_warning():
    X, y, _, _ = build_dataset(n_samples=1000, n_features=500)

    with pytest.warns(ConvergenceWarning):
        ElasticNet(max_iter=1,
                   tol=0).fit(sparse.csr_matrix(X, dtype=np.float32), y)

    # check that the model converges w/o warnings
    with pytest.warns(None) as record:
        Lasso(max_iter=1000).fit(sparse.csr_matrix(X, dtype=np.float32), y)

    assert not record.list
Example #13
0
def test_precompute_invalid_argument():
    X, y, _, _ = build_dataset()
    for clf in [
            ElasticNetCV(precompute="invalid"),
            LassoCV(precompute="invalid")
    ]:
        assert_raises_regex(
            ValueError, ".*should be.*True.*False.*auto.*"
            "array-like.*Got 'invalid'", clf.fit, X, y)

    # Precompute = 'auto' is not supported for ElasticNet
    assert_raises_regex(ValueError, ".*should be.*True.*False.*array-like.*"
                        "Got 'auto'",
                        ElasticNet(precompute='auto').fit, X, y)
Example #14
0
def test_ovr_multilabel():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
    y = np.array([[0, 1, 1],
                  [0, 1, 0],
                  [1, 1, 1],
                  [1, 0, 1],
                  [1, 0, 0]])

    for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
                     LinearRegression(), Ridge(),
                     ElasticNet(), Lasso(alpha=0.5)):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        y_pred = clf.predict([[0, 4, 4]])[0]
        assert_array_equal(y_pred, [0, 1, 1])
        assert clf.multilabel_
Example #15
0
def test_warm_start_convergence():
    X, y, _, _ = build_dataset()
    model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y)
    n_iter_reference = model.n_iter_

    # This dataset is not trivial enough for the model to converge in one pass.
    assert n_iter_reference > 2

    # Check that n_iter_ is invariant to multiple calls to fit
    # when warm_start=False, all else being equal.
    model.fit(X, y)
    n_iter_cold_start = model.n_iter_
    assert n_iter_cold_start == n_iter_reference

    # Fit the same model again, using a warm start: the optimizer just performs
    # a single pass before checking that it has already converged
    model.set_params(warm_start=True)
    model.fit(X, y)
    n_iter_warm_start = model.n_iter_
    assert n_iter_warm_start == 1
def test_enet_multitarget():
    n_targets = 3
    X, y = make_sparse_data(n_targets=n_targets)

    estimator = ElasticNet(alpha=0.01, precompute=None)
    # XXX: There is a bug when precompute is not None!
    estimator.fit(X, y)
    coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_,
                                 estimator.dual_gap_)

    for k in range(n_targets):
        estimator.fit(X, y[:, k])
        assert_array_almost_equal(coef[k, :], estimator.coef_)
        assert_array_almost_equal(intercept[k], estimator.intercept_)
        assert_array_almost_equal(dual_gap[k], estimator.dual_gap_)
Example #17
0
def test_check_input_false():
    X, y, _, _ = build_dataset(n_samples=20, n_features=10)
    X = check_array(X, order='F', dtype='float64')
    y = check_array(X, order='F', dtype='float64')
    clf = ElasticNet(selection='cyclic', tol=1e-8)
    # Check that no error is raised if data is provided in the right format
    clf.fit(X, y, check_input=False)
    # With check_input=False, an exhaustive check is not made on y but its
    # dtype is still cast in _preprocess_data to X's dtype. So the test should
    # pass anyway
    X = check_array(X, order='F', dtype='float32')
    clf.fit(X, y, check_input=False)
    # With no input checking, providing X in C order should result in false
    # computation
    X = check_array(X, order='C', dtype='float64')
    assert_raises(ValueError, clf.fit, X, y, check_input=False)
Example #18
0
def test_enet_multitarget():
    n_targets = 3
    X, y, _, _ = build_dataset(n_samples=10,
                               n_features=8,
                               n_informative_features=10,
                               n_targets=n_targets)
    estimator = ElasticNet(alpha=0.01)
    estimator.fit(X, y)
    coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_,
                                 estimator.dual_gap_)

    for k in range(n_targets):
        estimator.fit(X, y[:, k])
        assert_array_almost_equal(coef[k, :], estimator.coef_)
        assert_array_almost_equal(intercept[k], estimator.intercept_)
        assert_array_almost_equal(dual_gap[k], estimator.dual_gap_)
def test_same_multiple_output_sparse_dense():
    for normalize in [True, False]:
        l = ElasticNet(normalize=normalize)
        X = [[0, 1, 2, 3, 4], [0, 2, 5, 8, 11], [9, 10, 11, 12, 13],
             [10, 11, 12, 13, 14]]
        y = [[1, 2, 3, 4, 5], [1, 3, 6, 9, 12], [10, 11, 12, 13, 14],
             [11, 12, 13, 14, 15]]
        ignore_warnings(l.fit)(X, y)
        sample = np.array([1, 2, 3, 4, 5]).reshape(1, -1)
        predict_dense = l.predict(sample)

        l_sp = ElasticNet(normalize=normalize)
        X_sp = sp.coo_matrix(X)
        ignore_warnings(l_sp.fit)(X_sp, y)
        sample_sparse = sp.coo_matrix(sample)
        predict_sparse = l_sp.predict(sample_sparse)

        assert_array_almost_equal(predict_sparse, predict_dense)
Example #20
0
def test_ovr_binary():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
    y = ["eggs", "spam", "spam", "eggs", "spam"]
    Y = np.array([[0, 1, 1, 0, 1]]).T

    classes = set("eggs spam".split())

    def conduct_test(base_clf, test_predict_proba=False):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        assert set(clf.classes_) == classes
        y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
        assert_array_equal(y_pred, ["eggs"])
        if hasattr(base_clf, 'decision_function'):
            dec = clf.decision_function(X)
            assert dec.shape == (5,)

        if test_predict_proba:
            X_test = np.array([[0, 0, 4]])
            probabilities = clf.predict_proba(X_test)
            assert 2 == len(probabilities[0])
            assert (clf.classes_[np.argmax(probabilities, axis=1)] ==
                         clf.predict(X_test))

        # test input as label indicator matrix
        clf = OneVsRestClassifier(base_clf).fit(X, Y)
        y_pred = clf.predict([[3, 0, 0]])[0]
        assert y_pred == 1

    for base_clf in (LinearSVC(random_state=0), LinearRegression(),
                     Ridge(), ElasticNet()):
        conduct_test(base_clf)

    for base_clf in (MultinomialNB(), SVC(probability=True),
                     LogisticRegression()):
        conduct_test(base_clf, test_predict_proba=True)
Example #21
0
def test_ovr_multiclass():
    # Toy dataset where features correspond directly to labels.
    X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
    y = ["eggs", "spam", "ham", "eggs", "ham"]
    Y = np.array([[0, 0, 1],
                  [0, 1, 0],
                  [1, 0, 0],
                  [0, 0, 1],
                  [1, 0, 0]])

    classes = set("ham eggs spam".split())

    for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
                     LinearRegression(), Ridge(),
                     ElasticNet()):
        clf = OneVsRestClassifier(base_clf).fit(X, y)
        assert set(clf.classes_) == classes
        y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
        assert_array_equal(y_pred, ["eggs"])

        # test input as label indicator matrix
        clf = OneVsRestClassifier(base_clf).fit(X, Y)
        y_pred = clf.predict([[0, 0, 4]])[0]
        assert_array_equal(y_pred, [0, 0, 1])
def test_enet_toy_explicit_sparse_input():
    # Test ElasticNet for various values of alpha and l1_ratio with sparse X
    f = ignore_warnings
    # training samples
    X = sp.lil_matrix((3, 1))
    X[0, 0] = -1
    # X[1, 0] = 0
    X[2, 0] = 1
    Y = [-1, 0, 1]  # just a straight line (the identity function)

    # test samples
    T = sp.lil_matrix((3, 1))
    T[0, 0] = 2
    T[1, 0] = 3
    T[2, 0] = 4

    # this should be the same as lasso
    clf = ElasticNet(alpha=0, l1_ratio=1.0)
    f(clf.fit)(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
Example #23
0
def test_random_descent():
    # Test that both random and cyclic selection give the same results.
    # Ensure that the test models fully converge and check a wide
    # range of conditions.

    # This uses the coordinate descent algo using the gram trick.
    X, y, _, _ = build_dataset(n_samples=50, n_features=20)
    clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(X, y)
    clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42)
    clf_random.fit(X, y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # This uses the descent algo without the gram trick
    clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(X.T, y[:20])
    clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42)
    clf_random.fit(X.T, y[:20])
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Sparse Case
    clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(sparse.csr_matrix(X), y)
    clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42)
    clf_random.fit(sparse.csr_matrix(X), y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Multioutput case.
    new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
    clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8)
    clf_cyclic.fit(X, new_y)
    clf_random = MultiTaskElasticNet(selection='random',
                                     tol=1e-8,
                                     random_state=42)
    clf_random.fit(X, new_y)
    assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_)
    assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_)

    # Raise error when selection is not in cyclic or random.
    clf_random = ElasticNet(selection='invalid')
    assert_raises(ValueError, clf_random.fit, X, y)
def test_enet_toy_list_input():
    # Test ElasticNet for various values of alpha and l1_ratio with list X

    X = np.array([[-1], [0], [1]])
    X = sp.csc_matrix(X)
    Y = [-1, 0, 1]  # just a straight line
    T = np.array([[2], [3], [4]])  # test sample

    # this should be the same as unregularized least squares
    clf = ElasticNet(alpha=0, l1_ratio=1.0)
    # catch warning about alpha=0.
    # this is discouraged but should work.
    ignore_warnings(clf.fit)(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)
Example #25
0
def test_enet_toy():
    # Test ElasticNet for various parameters of alpha and l1_ratio.
    # Actually, the parameters alpha = 0 should not be allowed. However,
    # we test it as a border case.
    # ElasticNet is tested with and without precomputed Gram matrix

    X = np.array([[-1.], [0.], [1.]])
    Y = [-1, 0, 1]  # just a straight line
    T = [[2.], [3.], [4.]]  # test sample

    # this should be the same as lasso
    clf = ElasticNet(alpha=1e-8, l1_ratio=1.0)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [1])
    assert_array_almost_equal(pred, [2, 3, 4])
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=True)
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf.set_params(max_iter=100, precompute=np.dot(X.T, X))
    clf.fit(X, Y)  # with Gram
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
    assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
    assert_almost_equal(clf.dual_gap_, 0)

    clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
    clf.fit(X, Y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0.45454], 3)
    assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
    assert_almost_equal(clf.dual_gap_, 0)