Example #1
0
def test_one_hot_encoder_set_params():
    X = np.array([[1, 2]]).T
    oh = OneHotEncoder()
    # set params on not yet fitted object
    oh.set_params(categories=[[0, 1, 2, 3]])
    assert oh.get_params()['categories'] == [[0, 1, 2, 3]]
    assert oh.fit_transform(X).toarray().shape == (2, 4)
    # set params on already fitted object
    oh.set_params(categories=[[0, 1, 2, 3, 4]])
    assert oh.fit_transform(X).toarray().shape == (2, 5)
Example #2
0
def check_categorical_onehot(X):
    enc = OneHotEncoder(categories='auto')
    Xtr1 = enc.fit_transform(X)

    enc = OneHotEncoder(categories='auto', sparse=False)
    Xtr2 = enc.fit_transform(X)

    assert_allclose(Xtr1.toarray(), Xtr2)

    assert sparse.isspmatrix_csr(Xtr1)
    return Xtr1.toarray()
Example #3
0
def test_one_hot_encoder_dtype(input_dtype, output_dtype):
    X = np.asarray([[0, 1]], dtype=input_dtype).T
    X_expected = np.asarray([[1, 0], [0, 1]], dtype=output_dtype)

    oh = OneHotEncoder(categories='auto', dtype=output_dtype)
    assert_array_equal(oh.fit_transform(X).toarray(), X_expected)
    assert_array_equal(oh.fit(X).transform(X).toarray(), X_expected)

    oh = OneHotEncoder(categories='auto', dtype=output_dtype, sparse=False)
    assert_array_equal(oh.fit_transform(X), X_expected)
    assert_array_equal(oh.fit(X).transform(X), X_expected)
Example #4
0
def test_one_hot_encoder_dtype_pandas(output_dtype):
    pd = pytest.importorskip('pandas')

    X_df = pd.DataFrame({'A': ['a', 'b'], 'B': [1, 2]})
    X_expected = np.array([[1, 0, 1, 0], [0, 1, 0, 1]], dtype=output_dtype)

    oh = OneHotEncoder(dtype=output_dtype)
    assert_array_equal(oh.fit_transform(X_df).toarray(), X_expected)
    assert_array_equal(oh.fit(X_df).transform(X_df).toarray(), X_expected)

    oh = OneHotEncoder(dtype=output_dtype, sparse=False)
    assert_array_equal(oh.fit_transform(X_df), X_expected)
    assert_array_equal(oh.fit(X_df).transform(X_df), X_expected)
Example #5
0
def test_one_hot_encoder_unsorted_categories():
    X = np.array([['a', 'b']], dtype=object).T

    enc = OneHotEncoder(categories=[['b', 'a', 'c']])
    exp = np.array([[0., 1., 0.],
                    [1., 0., 0.]])
    assert_array_equal(enc.fit(X).transform(X).toarray(), exp)
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories_[0].tolist() == ['b', 'a', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.object_)

    # unsorted passed categories still raise for numerical values
    X = np.array([[1, 2]]).T
    enc = OneHotEncoder(categories=[[2, 1, 3]])
    msg = 'Unsorted categories are not supported'
    with pytest.raises(ValueError, match=msg):
        enc.fit_transform(X)
Example #6
0
def test_one_hot_encoder_sparse_dense():
    # check that sparse and dense will give the same results

    X = np.array([[3, 2, 1], [0, 1, 1]])
    enc_sparse = OneHotEncoder()
    enc_dense = OneHotEncoder(sparse=False)

    X_trans_sparse = enc_sparse.fit_transform(X)
    X_trans_dense = enc_dense.fit_transform(X)

    assert X_trans_sparse.shape == (2, 5)
    assert X_trans_dense.shape == (2, 5)

    assert sparse.issparse(X_trans_sparse)
    assert not sparse.issparse(X_trans_dense)

    # check outcome
    assert_array_equal(X_trans_sparse.toarray(), [[0., 1., 0., 1., 1.],
                                                  [1., 0., 1., 0., 1.]])
    assert_array_equal(X_trans_sparse.toarray(), X_trans_dense)
Example #7
0
def test_one_hot_encoder_inverse(sparse_, drop):
    X = [['abc', 2, 55], ['def', 1, 55], ['abc', 3, 55]]
    enc = OneHotEncoder(sparse=sparse_, drop=drop)
    X_tr = enc.fit_transform(X)
    exp = np.array(X, dtype=object)
    assert_array_equal(enc.inverse_transform(X_tr), exp)

    X = [[2, 55], [1, 55], [3, 55]]
    enc = OneHotEncoder(sparse=sparse_, categories='auto',
                        drop=drop)
    X_tr = enc.fit_transform(X)
    exp = np.array(X)
    assert_array_equal(enc.inverse_transform(X_tr), exp)

    if drop is None:
        # with unknown categories
        # drop is incompatible with handle_unknown=ignore
        X = [['abc', 2, 55], ['def', 1, 55], ['abc', 3, 55]]
        enc = OneHotEncoder(sparse=sparse_, handle_unknown='ignore',
                            categories=[['abc', 'def'], [1, 2],
                                        [54, 55, 56]])
        X_tr = enc.fit_transform(X)
        exp = np.array(X, dtype=object)
        exp[2, 1] = None
        assert_array_equal(enc.inverse_transform(X_tr), exp)

        # with an otherwise numerical output, still object if unknown
        X = [[2, 55], [1, 55], [3, 55]]
        enc = OneHotEncoder(sparse=sparse_, categories=[[1, 2], [54, 56]],
                            handle_unknown='ignore')
        X_tr = enc.fit_transform(X)
        exp = np.array(X, dtype=object)
        exp[2, 0] = None
        exp[:, 1] = None
        assert_array_equal(enc.inverse_transform(X_tr), exp)

    # incorrect shape raises
    X_tr = np.array([[0, 1, 1], [1, 0, 1]])
    msg = re.escape('Shape of the passed X data is not correct')
    with pytest.raises(ValueError, match=msg):
        enc.inverse_transform(X_tr)
Example #8
0
def test_one_hot_encoder_specified_categories_mixed_columns():
    # multiple columns
    X = np.array([['a', 'b'], [0, 2]], dtype=object).T
    enc = OneHotEncoder(categories=[['a', 'b', 'c'], [0, 1, 2]])
    exp = np.array([[1., 0., 0., 1., 0., 0.],
                    [0., 1., 0., 0., 0., 1.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories_[0].tolist() == ['a', 'b', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.object_)
    assert enc.categories_[1].tolist() == [0, 1, 2]
    # integer categories but from object dtype data
    assert np.issubdtype(enc.categories_[1].dtype, np.object_)
Example #9
0
def test_one_hot_encoder_raise_missing(X, as_data_frame, handle_unknown):
    if as_data_frame:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X)

    ohe = OneHotEncoder(categories='auto', handle_unknown=handle_unknown)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit(X)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit_transform(X)

    if as_data_frame:
        X_partial = X.iloc[:1, :]
    else:
        X_partial = X[:1, :]

    ohe.fit(X_partial)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.transform(X)
Example #10
0
def test_one_hot_encoder_drop_manual():
    cats_to_drop = ['def', 12, 3, 56]
    enc = OneHotEncoder(drop=cats_to_drop)
    X = [['abc', 12, 2, 55],
         ['def', 12, 1, 55],
         ['def', 12, 3, 56]]
    trans = enc.fit_transform(X).toarray()
    exp = [[1, 0, 1, 1],
           [0, 1, 0, 1],
           [0, 0, 0, 0]]
    assert_array_equal(trans, exp)
    dropped_cats = [cat[feature]
                    for cat, feature in zip(enc.categories_,
                                            enc.drop_idx_)]
    assert_array_equal(dropped_cats, cats_to_drop)
    assert_array_equal(np.array(X, dtype=object),
                       enc.inverse_transform(trans))
Example #11
0
def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype):
    enc = OneHotEncoder(categories=cats)
    exp = np.array([[1., 0., 0.],
                    [0., 1., 0.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert list(enc.categories[0]) == list(cats[0])
    assert enc.categories_[0].tolist() == list(cats[0])
    # manually specified categories should have same dtype as
    # the data when coerced from lists
    assert enc.categories_[0].dtype == cat_dtype

    # when specifying categories manually, unknown categories should already
    # raise when fitting
    enc = OneHotEncoder(categories=cats)
    with pytest.raises(ValueError, match="Found unknown categories"):
        enc.fit(X2)
    enc = OneHotEncoder(categories=cats, handle_unknown='ignore')
    exp = np.array([[1., 0., 0.], [0., 0., 0.]])
    assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp)