Example #1
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array
    global validation_array
    global input_dim
    global inter_dim

    complete_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/data.csv"
    train_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/validate.csv"
    test_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/test.csv"

    # load the CSV file as a numpy matrix
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    train_frame = train_frame.drop('diagnosis_M', axis=1)
    feature_list = list(train_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    train_array = mapper.fit_transform(train_frame)

    print train_array
    test_frame = pd.get_dummies(test_frame)
    test_frame = test_frame.drop('diagnosis_M', axis=1)
    feature_list = list(test_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    test_array = mapper.fit_transform(test_frame)

    validate_frame = pd.get_dummies(validate_frame)
    feature_list = list(validate_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    validation_array = mapper.fit_transform(validate_frame)

    # batch_size_tune()
    # learning_rate_tune(100,10)
    # optimizer_tune(100,10)
    # activation_tune(100, 10)
    # init_mode_tune(100,10)
    # dropout_tune(100,10)
    hidden_depth_tune(100, 10)
Example #2
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_frame
    global train_array
    global test_array
    global validation_array

    train_data = "/home/wso2123/My  Work/Datasets/Webscope/A3Benchmark/uncorrected_train.csv"
    validate_data = "/home/wso2123/My  Work/Datasets/Webscope/A3Benchmark/validate.csv"
    test_data = "/home/wso2123/My  Work/Datasets/Webscope/A3Benchmark/test.csv"
    one_class_data = "/home/wso2123/My  Work/Datasets/Webscope/A3Benchmark/train.csv"

    # load the CSV file as a numpy matrix
    # complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    feature_list = list(train_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    train_array = mapper.fit_transform(train_frame)
    # train_array = train_frame.as_matrix()

    test_frame = pd.get_dummies(test_frame)
    feature_list = list(test_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    test_array = mapper.fit_transform(test_frame)
    # test_array = test_frame.as_matrix()

    validate_frame = pd.get_dummies(validate_frame)
    feature_list = list(validate_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    validation_array = mapper.fit_transform(validate_frame)
    # validation_array = validate_frame.as_matrix()

    print "Training set (n_col, n_rows)", train_array.shape
    print "Testing set (n_col, n_rows)", test_array.shape
    print "Validation set (n_col, n_rows)", validation_array.shape

    li = [12, 15, 20, 25, 30]
    for i in range(1, 4):
        print i, "---------------"
        model_build(i)
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array
    global validation_array

    complete_data = "/home/wso2123/My Work/Datasets/Ionosphere/ionosphere.csv"
    train_data = "/home/wso2123/My Work/Datasets/Ionosphere/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/Ionosphere/validate.csv"
    test_data = "/home/wso2123/My Work/Datasets/Ionosphere/test.csv"

    # load the CSV file as a numpy matrix
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    train_frame = train_frame.drop('C35_b', axis=1)
    feature_list = list(train_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
                                              preprocessing.Normalizer()])])
    train_array = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    test_frame = test_frame.drop('C35_b', axis=1)
    feature_list = list(test_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
                                              preprocessing.Normalizer()])])
    test_array = mapper.fit_transform(test_frame)

    validate_frame = pd.get_dummies(validate_frame)
    feature_list = list(validate_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
                                              preprocessing.Normalizer()])])
    validation_array = mapper.fit_transform(validate_frame)

    print "Training set (n_col, n_rows)", train_array.shape
    print "Testing set (n_col, n_rows)", test_array.shape
    print "Validation set (n_col, n_rows)", validation_array.shape

    max_recall = 0
    dep = 0
    for i in range(1, 10):
        print i, "---------------"
        new_recall = model_build(15)
        if new_recall > max_recall:
            dep = i
            max_recall = new_recall
        print dep, max_recall
Example #4
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array

    complete_data = "/home/wso2123/My Work/Datasets/KDD Cup/train.csv"
    train_data = "/home/wso2123/My Work/Datasets/KDD Cup/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/KDD Cup/validate.csv"
    test_data = "/home/wso2123/My Work/Datasets/KDD Cup/test.csv"

    # load the CSV file as a pandas data frame
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    feature_list = list(train_frame.columns)
    mapper = DataFrameMapper([(feature_list[-20:],
                               preprocessing.OneHotEncoder()),
                              (feature_list[:-20],
                               preprocessing.Imputer(missing_values='NaN',
                                                     strategy='mean',
                                                     axis=0))])
    d = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    feature_list = list(test_frame.columns)
    mapper = DataFrameMapper([(feature_list[-20:],
                               preprocessing.OneHotEncoder()),
                              (feature_list[:-20],
                               preprocessing.Imputer(missing_values='NaN',
                                                     strategy='mean',
                                                     axis=0))])
    d1 = mapper.fit_transform(test_frame)

    print test_frame
    print train_frame
    recall = 1
    index = 1
    for i in tqdm(range(1, 40)):
        print i, "---------------"
        new_recal = model_build(12)
        if new_recal > recall:
            recall = new_recal
            index = i
        print "Max recall: ", recall, " at index: ", index
Example #5
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array
    global validation_array

    complete_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/data.csv"
    train_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/validate.csv"
    test_data = "/home/wso2123/My Work/Datasets/Breast cancer wisconsin/test.csv"

    # load the CSV file as a numpy matrix
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    train_frame = train_frame.drop('diagnosis_M', axis=1)
    feature_list = list(train_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
                                              preprocessing.Normalizer()])])
    train_array = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    test_frame = test_frame.drop('diagnosis_M', axis=1)
    feature_list = list(test_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
                                              preprocessing.Normalizer()])])
    test_array = mapper.fit_transform(test_frame)

    validate_frame = pd.get_dummies(validate_frame)
    feature_list = list(validate_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
                                              preprocessing.Normalizer()])])
    validation_array = mapper.fit_transform(validate_frame)

    for i in range(1):
        print i, "---------------"
        model_build(12)
Example #6
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array

    complete_data = "/home/wso2123/My Work/Datasets/Ionosphere/train.csv"
    train_data = "/home/wso2123/My Work/Datasets/Ionosphere/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/Ionosphere/validate.csv"
    test_data = "/home/wso2123/My Work/Datasets/Ionosphere/test.csv"

    # load the CSV file as a pandas data frame
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    feature_list = list(train_frame.columns)
    mapper = DataFrameMapper([(feature_list[-2:],
                               preprocessing.OneHotEncoder()),
                              (feature_list[:-2],
                               preprocessing.Imputer(missing_values='NaN',
                                                     strategy='mean',
                                                     axis=0))])
    d = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    feature_list = list(test_frame.columns)
    mapper = DataFrameMapper([(feature_list[-2:],
                               preprocessing.OneHotEncoder()),
                              (feature_list[:-2],
                               preprocessing.Imputer(missing_values='NaN',
                                                     strategy='mean',
                                                     axis=0))])
    d1 = mapper.fit_transform(test_frame)

    for i in range(1, 32):
        print i, "---------------"
        model_build(i)
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array
    global validation_array
    global batch_size
    global original_dim
    global latent_dim
    global intermediate_dim
    global nb_epoch
    global epsilon_std

    batch_size = 100
    original_dim = 118
    latent_dim = 3
    intermediate_dim = 25
    nb_epoch = 10
    epsilon_std = 1.0

    complete_data = "/home/wso2123/My Work/Datasets/KDD Cup/kddcup.data_10_percent_corrected"
    train_data = "/home/wso2123/My Work/Datasets/KDD Cup/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/KDD Cup/train.csv"
    test_data = "/home/wso2123/My Work/Datasets/KDD Cup/test.csv"

    # load the CSV file as a numpy matrix
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    lbl_list_train = [
        'C42_back.', 'C42_buffer_overflow.', 'C42_ftp_write.',
        'C42_guess_passwd.', 'C42_imap.', 'C42_ipsweep.', 'C42_land.',
        'C42_loadmodule.', 'C42_multihop.', 'C42_neptune.', 'C42_nmap.',
        'C42_perl.', 'C42_phf.', 'C42_pod.', 'C42_portsweep.', 'C42_rootkit.',
        'C42_satan.', 'C42_smurf.', 'C42_teardrop.', 'C42_warezclient.',
        'C42_warezmaster.'
    ]

    lbl_list_test = [
        'C42_back.', 'C42_buffer_overflow.', 'C42_ftp_write.',
        'C42_guess_passwd.', 'C42_imap.', 'C42_ipsweep.', 'C42_land.',
        'C42_loadmodule.', 'C42_multihop.', 'C42_neptune.', 'C42_nmap.',
        'C42_perl.', 'C42_pod.', 'C42_portsweep.', 'C42_rootkit.',
        'C42_satan.', 'C42_smurf.', 'C42_spy.', 'C42_teardrop.',
        'C42_warezclient.', 'C42_warezmaster.'
    ]

    train_frame = pd.get_dummies(train_frame)
    train_frame = train_frame.drop(lbl_list_train, axis=1)
    feature_list = list(train_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    train_array = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    test_frame = test_frame.drop(lbl_list_test, axis=1)
    feature_list = list(test_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    test_array = mapper.fit_transform(test_frame)

    # validate_frame = pd.get_dummies(validate_frame)
    # feature_list = list(validate_frame.columns)
    # print feature_list, len(feature_list)
    # mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
    #                                           preprocessing.Normalizer()])])
    # validation_array = mapper.fit_transform(validate_frame)
    validation_array = train_array[0:103744]

    print "Training set (n_col, n_rows)", train_array.shape
    print "Testing set (n_col, n_rows)", test_array.shape
    print "Validation set (n_col, n_rows)", validation_array.shape

    for i in range(1, 10):
        print i, "---------------"
        model_build(i)
Example #8
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array
    global validation_array

    complete_data = "/home/wso2123/My Work/Datasets/KDD Cup/kddcup.data_10_percent_corrected"
    train_data = "/home/wso2123/My Work/Datasets/KDD Cup/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/KDD Cup/train.csv"
    test_data = "/home/wso2123/My Work/Datasets/KDD Cup/test.csv"

    # load the CSV file as a numpy matrix
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    lbl_list_train = [
        'C42_back.', 'C42_buffer_overflow.', 'C42_ftp_write.',
        'C42_guess_passwd.', 'C42_imap.', 'C42_ipsweep.', 'C42_land.',
        'C42_loadmodule.', 'C42_multihop.', 'C42_neptune.', 'C42_nmap.',
        'C42_perl.', 'C42_phf.', 'C42_pod.', 'C42_portsweep.', 'C42_rootkit.',
        'C42_satan.', 'C42_smurf.', 'C42_teardrop.', 'C42_warezclient.',
        'C42_warezmaster.'
    ]

    lbl_list_test = [
        'C42_back.', 'C42_buffer_overflow.', 'C42_ftp_write.',
        'C42_guess_passwd.', 'C42_imap.', 'C42_ipsweep.', 'C42_land.',
        'C42_loadmodule.', 'C42_multihop.', 'C42_neptune.', 'C42_nmap.',
        'C42_perl.', 'C42_pod.', 'C42_portsweep.', 'C42_rootkit.',
        'C42_satan.', 'C42_smurf.', 'C42_spy.', 'C42_teardrop.',
        'C42_warezclient.', 'C42_warezmaster.'
    ]

    train_frame = pd.get_dummies(train_frame)
    train_frame = train_frame.drop(lbl_list_train, axis=1)
    feature_list = list(train_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    train_array = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    test_frame = test_frame.drop(lbl_list_test, axis=1)
    feature_list = list(test_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    test_array = mapper.fit_transform(test_frame)

    # validate_frame = pd.get_dummies(validate_frame)
    # feature_list = list(validate_frame.columns)
    # print feature_list, len(feature_list)
    # mapper = DataFrameMapper([(feature_list, [preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
    #                                           preprocessing.Normalizer()])])
    # validation_array = mapper.fit_transform(validate_frame)
    validation_array = train_array[0:103744]

    train_array = np.reshape(train_array, (len(train_array), 1, 118))
    test_array = np.reshape(test_array, (len(test_array), 1, 118))
    # x_test = np.reshape(x_test, (len(x_test), 1, 28, 28))

    print "Training set (n_col, n_rows)", train_array.shape
    print "Testing set (n_col, n_rows)", test_array.shape
    print "Validation set (n_col, n_rows)", validation_array.shape
    print train_array[0]

    li = [25, 40, 55, 75, 80]
    for i in range(1):
        print i, "---------------"
        model_build(li[i - 1])
Example #9
0
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_array
    global train_array
    global test_array
    global validation_array
    global batch_size
    global original_dim
    global latent_dim
    global intermediate_dim
    global nb_epoch
    global epsilon_std

    batch_size = 199
    original_dim = 35
    latent_dim = 3
    intermediate_dim = 15
    nb_epoch = 100
    epsilon_std = 1.0

    complete_data = "/home/wso2123/My Work/Datasets/Ionosphere/ionosphere.csv"
    train_data = "/home/wso2123/My Work/Datasets/Ionosphere/uncorrected_train.csv"
    validate_data = "/home/wso2123/My Work/Datasets/Ionosphere/validate.csv"
    test_data = "/home/wso2123/My Work/Datasets/Ionosphere/test.csv"

    # load the CSV file as a numpy matrix
    complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    train_frame = train_frame.drop('C35_b', axis=1)
    feature_list = list(train_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    train_array = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    test_frame = test_frame.drop('C35_b', axis=1)
    feature_list = list(test_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    test_array = mapper.fit_transform(test_frame)

    validate_frame = pd.get_dummies(validate_frame)
    feature_list = list(validate_frame.columns)
    print feature_list
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    validation_array = mapper.fit_transform(validate_frame)

    print "Training set (n_col, n_rows)", train_array.shape
    print "Testing set (n_col, n_rows)", test_array.shape
    print "Validation set (n_col, n_rows)", validation_array.shape

    for i in range(1, 10):
        print i, "---------------"
        model_build(i)
def main():
    global complete_frame
    global train_frame
    global validate_frame
    global test_frame
    global train_array
    global test_array
    global validation_array
    global batch_size
    global input_dim
    global latent_dim
    global timesteps
    global nb_epoch
    global epsilon_std

    batch_size = 100
    input_dim = 31
    latent_dim = 12
    timesteps = 5
    nb_epoch = 10
    epsilon_std = 1.0

    # complete_data = "/home/wso2123/My  Work/Datasets/KDD Cup/kddcup.data_10_percent_corrected"
    train_data = "/home/wso2123/My  Work/Datasets/Creditcard/train.csv"
    validate_data = "/home/wso2123/My  Work/Datasets/Creditcard/validate.csv"
    test_data = "/home/wso2123/My  Work/Datasets/Creditcard/test.csv"

    # load the CSV file as a numpy matrix
    # complete_frame = pd.read_csv(complete_data)
    train_frame = pd.read_csv(train_data)
    validate_frame = pd.read_csv(validate_data)
    test_frame = pd.read_csv(test_data)

    train_frame = pd.get_dummies(train_frame)
    # train_frame = train_frame.drop(lbl_list_train, axis=1)
    feature_list = list(train_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    train_array = mapper.fit_transform(train_frame)

    test_frame = pd.get_dummies(test_frame)
    # test_frame = test_frame.drop(lbl_list_test, axis=1)
    feature_list = list(test_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    test_array = mapper.fit_transform(test_frame)
    test_array = test_array[0:85440]

    validate_frame = pd.get_dummies(validate_frame)
    feature_list = list(validate_frame.columns)
    print feature_list, len(feature_list)
    mapper = DataFrameMapper([(feature_list, [
        preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0),
        preprocessing.Normalizer()
    ])])
    validation_array = mapper.fit_transform(validate_frame)

    train_array = np.reshape(train_array, (len(train_array) / 5, 5, input_dim))
    test_array = np.reshape(test_array, (len(test_array) / 5, 5, input_dim))
    validation_array = np.reshape(validation_array,
                                  (len(validation_array) / 5, 5, input_dim))

    print "Training set (n_col, n_rows)", train_array.shape
    print "Testing set (n_col, n_rows)", test_array.shape
    print "Validation set (n_col, n_rows)", validation_array.shape

    for i in range(1):
        print i, "---------------"
        model_build(i)