def objective(us: [float]) -> float: model, user_search_params, info = embedding(us, n_input) info['global_optimizer'] = global_optimizer.__name__ info['embedding_name']=embedding_name print(' ') print(model.summary()) search_params = {'epochs':2000,'patience':50,'jiggle_fraction':0.1,'symmetries':None} search_params.update(user_search_params) pprint(search_params) model, metrics, test_error_ratio = challenge(model=model, skater_name=skater_name, k=k, n_real=60, n_samples=150, n_warm=100, n_input=n_input, with_metrics=True, verbose=1, info=info, **search_params) return metrics['test_error']
def build_challenger_model(n_inputs): model = keras.Sequential() kernel_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.02, seed=None) bias_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.21, seed=None) model.add( keras.layers.Dense(80, activation="linear", input_shape=(1, n_inputs), kernel_initializer=kernel_initializer_0, bias_initializer=bias_initializer_0)) model.add(keras.layers.Dense(16, activation='linear')) model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.Adagrad(learning_rate=0.005) model.compile(loss='mse', optimizer=optimizer) return model if __name__ == '__main__': skater_name = __file__.split(os.path.sep)[-1].replace('challenge_', '').replace( '.py', '') print(skater_name) model = build_challenger_model(n_inputs=80) challenge(model=model, skater_name=skater_name, epochs=5000, patience=50)
model.add(keras.layers.Dense(6, activation="linear")) model.add(keras.layers.Dense(8, activation="linear")) model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.RMSprop(learning_rate=0.001) model.add(keras.layers.Dropout(0.01)) model.compile(loss='mse', optimizer=optimizer) # y = model(ones((1, n_inputs))) return model suggestion = """ def build_last_value_champion_model(n_inputs): model = keras.Sequential() model.add(keras.layers.Dense(8, activation="linear", input_shape=(1,n_inputs))) model.add(keras.layers.Dense(6, activation="relu")) model.add(keras.layers.Dense(8, activation="linear")) model.add(keras.layers.Dense(1, activation="linear")) model.compile(loss='mse') #y = model(ones((1, n_inputs))) return model""" champ = """ """ if __name__=='__main__': skater_name = __file__.split(os.path.sep)[-1].replace('challenge_','').replace('.py','') print(skater_name) model = build_challenger_model(n_inputs=80) challenge(model=model, skater_name=skater_name, epochs=50, jiggle_fraction=0.05)
model.add(keras.layers.Dense(2, activation="tanh")) # selu model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.Adagrad(learning_rate=0.005) model.compile(loss='mse', optimizer=optimizer) return model champ = """ def champion_model(n_inputs): model = keras.Sequential() kernel_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.02, seed=None) bias_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.21, seed=None) model.add(keras.layers.Dense(80, activation="linear", input_shape=(1, n_inputs), kernel_initializer=kernel_initializer_0, bias_initializer=bias_initializer_0)) model.add(keras.layers.Dense(16, activation='softsign')) model.add(keras.layers.Dense(2, activation="tanh")) # selu model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.Adagrad(learning_rate=0.005) model.compile(loss='mse', optimizer=optimizer) return model """ if __name__ == '__main__': skater_name = __file__.split(os.path.sep)[-1].replace('challenge_', '').replace( '.py', '') print(skater_name) model = build_challenger_model(n_inputs=80) challenge(model=model, skater_name=skater_name, epochs=500)
model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.RMSprop(learning_rate=0.001) model.compile(loss='mse', optimizer=optimizer) return model champ = """def build_challenger_model(n_inputs): model = keras.Sequential() kernel_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.02, seed=None) bias_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.21, seed=None) model.add(keras.layers.Dense(80, activation="linear", input_shape=(1, n_inputs), kernel_initializer=kernel_initializer_0, bias_initializer=bias_initializer_0)) model.add(keras.layers.Dense(16, activation='linear')) model.add(keras.layers.Dense(2, activation="linear")) # selu model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.Adagrad(learning_rate=0.005) model.compile(loss='mse', optimizer=optimizer) return model""" if __name__ == '__main__': skater_name = __file__.split(os.path.sep)[-1].replace('challenge_', '').replace( '.py', '') print(skater_name) model = build_challenger_model(n_inputs=80) challenge(model=model, skater_name=skater_name, epochs=5000, patience=50, jiggle_fraction=0.2)
from sklearned.challenging.surrogatechallenge import challenge from tensorflow import keras import os def build_challenger_model(n_inputs): model = keras.Sequential() kernel_initializer_0 = keras.initializers.RandomUniform(minval=0.01, maxval=0.1, seed=None) bias_initializer_0 = keras.initializers.RandomUniform(minval=-0.2, maxval=0.2, seed=None) model.add(keras.layers.Dense(80, activation="linear", input_shape=(1, n_inputs), kernel_initializer=kernel_initializer_0, bias_initializer=bias_initializer_0)) model.add(keras.layers.Dense(16, activation='linear')) model.add(keras.layers.Dense(2, activation="linear")) # selu model.add(keras.layers.Dense(1, activation="linear")) optimizer = keras.optimizers.RMSprop(learning_rate=0.001) model.compile(loss='mse', optimizer=optimizer) return model if __name__=='__main__': skater_name = __file__.split(os.path.sep)[-1].replace('challenge_','').replace('.py','') print(skater_name) model = build_challenger_model(n_inputs=80) challenge(model=model, skater_name=skater_name, epochs=5, patience=25)