def test_biclustering(self):
     self.directed: sparse.csr_matrix = painters()
     bispectral_clustering = BiSpectralClustering(embedding_dimension=3,
                                                  co_clustering=False)
     bispectral_clustering.fit(self.directed)
     self.assertEqual(bispectral_clustering.labels_.shape[0],
                      self.directed.shape[0])
     self.assertTrue(bispectral_clustering.col_labels_ is None)
Example #2
0
    def test_maxrdiff(self):
        adjacency: sparse.csr_matrix = painters()
        adj_array_seeds = -np.ones(adjacency.shape[0])
        adj_array_seeds[:2] = np.arange(2)
        adj_dict_seeds = {0: 0, 1: 1}

        md = MaxDiff()
        labels1 = md.fit_transform(adjacency, adj_array_seeds)
        labels2 = md.fit_transform(adjacency, adj_dict_seeds)
        self.assertTrue(np.allclose(labels1, labels2))
        self.assertEqual(labels2.shape[0], adjacency.shape[0])
Example #3
0
    def test_multidiff(self):
        adjacency: sparse.csr_matrix = painters()
        adj_array_seeds = -np.ones(adjacency.shape[0])
        adj_array_seeds[:2] = np.arange(2)
        adj_dict_seeds = {0: 0, 1: 1}

        md = MultiDiff()
        membership1 = md.fit_transform(adjacency, adj_array_seeds)
        membership2 = md.fit_transform(adjacency, adj_dict_seeds)
        self.assertTrue(np.allclose(membership1, membership2))
        self.assertEqual(membership2.shape, (adjacency.shape[0], 2))
Example #4
0
    def test_directed(self):
        self.painters = painters(return_labels=False)

        self.louvain.fit(self.painters)
        labels = self.louvain.labels_
        self.assertEqual(labels.shape, (14, ))
        self.assertAlmostEqual(modularity(self.painters, labels), 0.32, 2)

        self.bilouvain.fit(self.painters)
        n1, n2 = self.painters.shape
        row_labels = self.bilouvain.row_labels_
        col_labels = self.bilouvain.col_labels_
        self.assertEqual(row_labels.shape, (n1, ))
        self.assertEqual(col_labels.shape, (n2, ))
Example #5
0
 def test_directed(self):
     self.painters = painters(return_labels=False)
     adjacency: sparse.csr_matrix = self.painters
     self.diffusion.fit(adjacency, {0: 0, 1: 1, 2: 0.5})
     score = self.diffusion.scores_
     self.assertTrue(np.all(score <= 1 + self.tol) and np.all(score >= 0 - self.tol))
Example #6
0
 def setUp(self):
     self.undirected: sparse.csr_matrix = karate_club()
     self.directed: sparse.csr_matrix = painters()
     self.bipartite: sparse.csr_matrix = movie_actor()