Example #1
0
def train_model_autoarima(y, x, output: bool = True) -> AutoARIMA:
    if output:
        logger.info("Training AutoARIMA model...")
        timer = Timer()
    model = AutoARIMA(suppress_warnings=True, error_action='ignore')

    y = pd.Series(data=np.delete(y, 0))
    x = pd.DataFrame(data=x[:-1])

    model.fit(y, x)

    if output:
        model.summary()
        logger.info(f'Done in {timer}')
    return model
plt.style.use('ggplot')

df = pd.read_csv(
    'https://raw.githubusercontent.com/selva86/datasets/master/a10.csv',
    parse_dates=['date'],
    index_col="date")

df.index = pd.PeriodIndex(df.index, freq="M")

series = df.T.iloc[0]

plot_series(series)

model_auto = AutoARIMA(sp=12, suppress_warnings=True).fit(series)

summary = model_auto.summary()


def get_params(summary_text):
    full = re.findall(r'SARIMAX\(.*?\)x\(.*?\)', summary_text)[0]
    info = [int(_) for _ in re.findall(r'\d+', full)]
    return info


p, d, q, P, D, Q, S = get_params(summary.as_text())

y_train, y_test = temporal_train_test_split(series, test_size=24)

fh = ForecastingHorizon(y_test.index, is_relative=False)

plot_series(y_train, y_test, labels=['Train', 'Test'])