def test_pipeline(network=CNNClassifier()): ''' slightly more generalised test with sktime pipelines load data, construct pipeline with classifier, fit, score ''' print("Start test_pipeline()") from sktime.pipeline import Pipeline # just a simple (useless) pipeline for the purposes of testing # that the keras network is compatible with that system steps = [ ('clf', network) ] clf = Pipeline(steps) X_train, y_train = load_italy_power_demand(split='TRAIN', return_X_y=True) X_test, y_test = load_italy_power_demand(split='TEST', return_X_y=True) hist = clf.fit(X_train[:10], y_train[:10]) print(clf.score(X_test[:10], y_test[:10])) print("End test_pipeline()")
def test_pipeline(network=catch22ForestClassifier()): ''' slightly more generalised test with sktime pipelines load data, construct pipeline with classifier, fit, score ''' print("Start test_pipeline()") from sktime.pipeline import Pipeline # just a simple (useless) pipeline steps = [('clf', network)] clf = Pipeline(steps) X_train, y_train = load_gunpoint(split='TRAIN', return_X_y=True) X_test, y_test = load_gunpoint(split='TEST', return_X_y=True) hist = clf.fit(X_train[:10], y_train[:10]) print(clf.score(X_test[:10], y_test[:10])) print("End test_pipeline()")
def concatenateMethod(Classifier, x_train, y_train, x_test, y_test): steps = [('concatenate', ColumnConcatenator()), ('classify', Classifier(n_estimators=10))] clf = Pipeline(steps) clf.fit(x_train, y_train) return clf.score(x_test, y_test)