def test_attributes():

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert_array_equal(trajs.t_stamps, np.array([0, 1, 2, 3, 4]))

    assert_array_equal(trajs.labels, np.array([0, 1, 2, 3, 4]))

    segments = {
        0: [(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)],
        1: [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1)],
        2: [(0, 2), (1, 2), (2, 2), (3, 2), (4, 2)],
        3: [(0, 3), (1, 3), (2, 3), (3, 3), (4, 3)],
        4: [(0, 4), (1, 4), (2, 4), (3, 4), (4, 4)]
    }
    assert_dict_equal(trajs.segment_idxs, segments)

    traj = np.array([[-9.25386045, 11.34555088, 22.11820326, 3., 0.],
                     [11.05321776, 3.23738477, 2.62790435, 2., 1.],
                     [16.6824928, 14.602054, -12.1218683, 4., 2.],
                     [17.22410516, 14.8068125, -11.87642753, 4., 3.],
                     [2.80222495, -13.13783042, 8.56406878, 0., 4.]])
    t_stamp, traj_to_test = list(trajs.iter_segments)[0]
    assert_array_almost_equal(traj, traj_to_test)

    assert list(trajs.get_segments().keys()) == [0, 1, 2, 3, 4]
Example #2
0
def get_from_excel(data_path, extra_sheet=None):
    '''
    This opens a file dialog allowing ot select an excel file containing
    the tracked data, and returns a :class:`CellCluster` object.

    Paramteters
    -----------

    data_path: the path to the excelTM file

    Returns
    -------

    cellcluster : a :class:`CellCluster` instance
         the container class for the tracking

    Notes
    -----

    The excel file should follow the structure of `excel_trajs_example.xlsx`
    in the project's `data` directory
    '''

    ### Read the data
    trajs = pd.read_excel(data_path, 0)
    trajs.t_stamp = trajs.t_stamp.astype(np.int)
    trajs.label = trajs.label.astype(np.int)
    trajs.set_index(['t_stamp', 'label'],
                    inplace=True)

    ### The Trajectories class is a subclass of
    ### pandas DataFrame
    ### Parsing excel files tends to add NaNs to the data
    trajs = Trajectories(trajs.dropna().sortlevel())
    metadata = pd.read_excel(data_path, 1)
    metadata = {name: value for name, value
                in zip(metadata['Name'], metadata['Value'])}

    metadata['FileName'] = data_path
    store_path = metadata['FileName']
    if '.' in store_path[-6:]:
        store_path = ''.join(store_path.split('.')[:-1]+['.h5'])
    else:
        store_path = store_path+'.h5'
    store_path = os.path.join(
        os.path.dirname(data_path), store_path)

    ### The ObjectsIO class
    objectsio = ObjectsIO(metadata=metadata, store_path=store_path)
    cellcluster = CellCluster(objectsio=objectsio)
    cellcluster.trajs = trajs
    cellcluster.oio['trajs'] = trajs
    if extra_sheet is not None:
        try:
            extra = pd.read_excel(data_path, extra_sheet)
            cellcluster.extra = extra
            cellcluster.oio['extra'] = extra
        except:
            print('Extra data from sheet {} not found in the file {}'.format(extra_sheet, data_path))
    return cellcluster
Example #3
0
def test_attributes():

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert_array_equal(trajs.t_stamps, np.array([0, 1, 2, 3, 4]))

    assert_array_equal(trajs.labels, np.array([0, 1, 2, 3, 4]))

    segments = {0: [(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)],
                1: [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1)],
                2: [(0, 2), (1, 2), (2, 2), (3, 2), (4, 2)],
                3: [(0, 3), (1, 3), (2, 3), (3, 3), (4, 3)],
                4: [(0, 4), (1, 4), (2, 4), (3, 4), (4, 4)]}
    assert_dict_equal(trajs.segment_idxs, segments)

    traj = np.array([[ -9.25386045,  11.34555088,  22.11820326,   3.        ,   0.        ],
                     [ 11.05321776,   3.23738477,   2.62790435,   2.        ,   1.        ],
                     [ 16.6824928 ,  14.602054  , -12.1218683 ,   4.        ,   2.        ],
                     [ 17.22410516,  14.8068125 , -11.87642753,   4.        ,   3.        ],
                     [  2.80222495, -13.13783042,   8.56406878,   0.        ,   4.        ]])
    t_stamp, traj_to_test = list(trajs.iter_segments)[0]
    assert_array_almost_equal(traj, traj_to_test)

    assert list(trajs.get_segments().keys()) == [0, 1, 2, 3, 4]
def test_get_colors():
    """
    """

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    colors = trajs.get_colors()
    assert colors == {
        0: '#FF0000',
        1: '#ADFF00',
        2: '#00FFA9',
        3: '#0408FF',
        4: '#FF00AC'
    }

    colors = trajs.get_colors(alpha=0.5)
    assert colors == {
        0: '#FF000080',
        1: '#ADFF0080',
        2: '#00FFA980',
        3: '#0408FF80',
        4: '#FF00AC80'
    }

    colors = trajs.get_colors(rgba=True)
    good_colors = {
        0: (1.0, 0.0, 0.0, 1.0),
        1: (0.67977809154279767, 1.0, 0.0, 1.0),
        2: (0.0, 1.0, 0.66360181783683614, 1.0),
        3: (0.015440535661123769, 0.031618928677752463, 1.0, 1.0),
        4: (1.0, 0.0, 0.67279469669175529, 1.0)
    }
    assert colors == good_colors
Example #5
0
def test_get_speeds():

    trajs = Trajectories(data.brownian_trajs_df())
    speeds = trajs.get_speeds().tolist()

    real_speeds = [np.nan,
                   np.nan,
                   np.nan,
                   np.nan,
                   np.nan,
                   857.99153458573994,
                   1596.9530747771976,
                   873.15267834726137,
                   1282.3088174598233,
                   408.98588960526808,
                   378.40023709328955,
                   1809.9895146014187,
                   917.93227668556324,
                   592.31881736181106,
                   0.48325048326444919,
                   0.39551116881922965,
                   798.29858694043128,
                   1085.3214310682606,
                   405.49164945495221,
                   550.37555144616226,
                   1406.707586739079,
                   1031.9444945962532,
                   1077.6619763794718,
                   1445.7789239945778,
                   739.66839622816326]

    assert_almost_equal(speeds, real_speeds)
Example #6
0
def get_get_diff():

    trajs = Trajectories(data.brownian_trajs_df())
    diffs = trajs.get_diff()
    x_diffs = diffs.to_dict()['x']

    real_x_diffs = {(1, 2): 3.8452299074207819,
                    (3, 2): 4.7476193900872765,
                    (0, 0): np.nan,
                    (3, 0): 0.54161236467700746,
                    (0, 4): np.nan,
                    (1, 4): -5.6929349491048624,
                    (1, 3): -30.136494087633611,
                    (2, 3): 23.240228721514185,
                    (2, 1): -23.9264368052234,
                    (2, 4): 0.63465512968445115,
                    (4, 2): -4.5501817884252063,
                    (1, 0): 20.307078207040306,
                    (0, 3): np.nan,
                    (4, 0): -14.421880216023439,
                    (0, 1): np.nan,
                    (3, 3): -6.5845079821965991,
                    (4, 1): -19.329775838349192,
                    (3, 1): 18.084232469105203,
                    (4, 4): 24.644945052453025,
                    (0, 2): np.nan,
                    (2, 0): 5.6292750381105723,
                    (4, 3): 13.209596167161628,
                    (2, 2): -3.7469188310869228,
                    (3, 4): -17.381636024737336,
                    (1, 1): 13.827909766138866}

    assert_almost_equal(x_diffs, real_x_diffs)
def get_get_diff():

    trajs = Trajectories(data.brownian_trajs_df())
    diffs = trajs.get_diff()
    x_diffs = diffs.to_dict()['x']

    real_x_diffs = {
        (1, 2): 3.8452299074207819,
        (3, 2): 4.7476193900872765,
        (0, 0): np.nan,
        (3, 0): 0.54161236467700746,
        (0, 4): np.nan,
        (1, 4): -5.6929349491048624,
        (1, 3): -30.136494087633611,
        (2, 3): 23.240228721514185,
        (2, 1): -23.9264368052234,
        (2, 4): 0.63465512968445115,
        (4, 2): -4.5501817884252063,
        (1, 0): 20.307078207040306,
        (0, 3): np.nan,
        (4, 0): -14.421880216023439,
        (0, 1): np.nan,
        (3, 3): -6.5845079821965991,
        (4, 1): -19.329775838349192,
        (3, 1): 18.084232469105203,
        (4, 4): 24.644945052453025,
        (0, 2): np.nan,
        (2, 0): 5.6292750381105723,
        (4, 3): 13.209596167161628,
        (2, 2): -3.7469188310869228,
        (3, 4): -17.381636024737336,
        (1, 1): 13.827909766138866
    }

    assert_almost_equal(x_diffs, real_x_diffs)
Example #8
0
def test_structure():
    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert_raises(ValueError, trajs.check_trajs_df_structure, ['t_idx'])
    assert_raises(ValueError, trajs.check_trajs_df_structure, ['t_stamp', 'label'], ['dx'])

    trajs.check_trajs_df_structure(['t_stamp', 'label'], ['x', 'y', 'z'])
Example #9
0
def test_get_shortest_segments():
    """
    """

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert trajs.get_shortest_segments(1) == [0]
def test_get_shortest_segments():
    """
    """

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert trajs.get_shortest_segments(1) == [0]
def test_structure():
    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert_raises(ValueError, trajs.check_trajs_df_structure, ['t_idx'])
    assert_raises(ValueError, trajs.check_trajs_df_structure,
                  ['t_stamp', 'label'], ['dx'])

    trajs.check_trajs_df_structure(['t_stamp', 'label'], ['x', 'y', 'z'])
def test_merge():
    """
    """

    trajs1 = Trajectories(data.brownian_trajs_df())
    trajs2 = Trajectories(data.brownian_trajs_df())

    new = trajs1.merge(trajs2)

    assert len(trajs1.labels) + len(trajs2.labels) == len(new.labels)
def test_remove_segments():
    """
    """

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    trajs.remove_segments(1, inplace=True)

    assert np.all(trajs.labels == [0, 2, 3, 4])
def test_get_t_stamps_correspondences():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    trajs['t'] *= 33
    data_values = [132, 33, 99, 66, 33, 33, 99., 99, 132]
    t_stamps = trajs.get_t_stamps_correspondences(data_values, column='t')

    assert_array_equal(t_stamps, [4, 1, 3, 2, 1, 1, 3, 3, 4])
Example #15
0
def test_merge():
    """
    """

    trajs1 = Trajectories(data.brownian_trajs_df())
    trajs2 = Trajectories(data.brownian_trajs_df())

    new = trajs1.merge(trajs2)

    assert len(trajs1.labels) + len(trajs2.labels) == len(new.labels)
Example #16
0
def test_remove_segments():
    """
    """

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    trajs.remove_segments(1, inplace=True)

    assert np.all(trajs.labels == [0, 2, 3, 4])
Example #17
0
def test_get_t_stamps_correspondences():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    trajs['t'] *= 33
    data_values = [132, 33, 99, 66, 33, 33, 99., 99, 132]
    t_stamps = trajs.get_t_stamps_correspondences(data_values, column='t')

    assert_array_equal(t_stamps, [4, 1, 3, 2, 1, 1, 3, 3, 4])
def test_relabel():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())
    trajs.columns = ['x', 'y', 'z', 'new_label', 't']
    trajs.relabel(inplace=True)

    new_values = [
        [1.933058243735795, -14.581064591435775, 11.603556633147544, 0.0],
        [-12.862215173899491, -2.8611502446443238, -2.2738941196781424, 0.0],
        [9.100887851132633, 2.837252570763561, 2.875753940450461, 0.0],
        [-9.253860446235523, 11.345550876585719, 22.118203258275745, 0.0]
    ]

    assert trajs.iloc[:4].values.tolist() == new_values

    trajs = Trajectories(data.brownian_trajs_df())
    trajs.columns = ['x', 'y', 'z', 'new_label', 't']
    trajs = trajs.relabel(inplace=False)

    new_values = [
        [1.933058243735795, -14.581064591435775, 11.603556633147544, 0.0],
        [-12.862215173899491, -2.8611502446443238, -2.2738941196781424, 0.0],
        [9.100887851132633, 2.837252570763561, 2.875753940450461, 0.0],
        [-9.253860446235523, 11.345550876585719, 22.118203258275745, 0.0]
    ]

    assert trajs.iloc[:4].values.tolist() == new_values
def test_project():

    trajs = Trajectories(data.directed_motion_trajs_df())
    trajs.rename(columns={'true_label': 'new_label'}, inplace=True)
    trajs.relabel()

    trajs.project([0, 1],
                  coords=['x', 'y'],
                  keep_first_time=False,
                  reference=None,
                  inplace=True,
                  progress=False)

    excepted = np.array([[0.27027431, 0.], [-0.27027431, 0.],
                         [-0.25306519, 0.69683713], [0.04633664, 0.31722648]])

    assert_array_almost_equal(excepted,
                              trajs.loc[:, ['x_proj', 'y_proj']].values[:4])

    trajs = trajs.project([0, 1],
                          coords=['x', 'y'],
                          keep_first_time=False,
                          reference=None,
                          inplace=False,
                          progress=False)

    assert_array_almost_equal(excepted,
                              trajs.loc[:, ['x_proj', 'y_proj']].values[:4])

    assert_raises(ValueError,
                  trajs.project, [0, 1],
                  coords=['x', 'y', 'z', 't'])
Example #20
0
def test_reverse():
    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert trajs.reverse().shape == (25, 5)

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)
    trajs.reverse(inplace=True)

    assert trajs.shape == (25, 5)
Example #21
0
def test_get_bounds():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    trajs['t'] *= 10
    t_stamp_bounds = {0: (0, 4), 1: (0, 4), 2: (0, 4), 3: (0, 4), 4: (0, 4)}
    t_bounds = {0: (0.0, 40.0), 1: (0.0, 40.0), 2: (0.0, 40.0), 3: (0.0, 40.0), 4: (0.0, 40.0)}

    assert trajs.get_bounds() == t_stamp_bounds
    assert trajs.get_bounds(column='t') == t_bounds
Example #22
0
def test_scale():

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)
    scaled = trajs.scale(factors=[2., 2., 2.],
                         coords=['x', 'y', 'z'], inplace=False)
    assert_array_almost_equal(scaled[['x', 'y', 'z']] / 2., trajs[['x', 'y', 'z']])
    trajs = trajs.scale(factors=[2., 2., 2.],
                        coords=['x', 'y', 'z'], inplace=True)
    assert_array_almost_equal(scaled[['x', 'y', 'z']], trajs[['x', 'y', 'z']])

    assert_raises(ValueError, trajs.scale, factors=[2., 2., 2.], coords=['x', 'y'], inplace=False)
def test_duplicate_segments():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())

    trajs = trajs.duplicate_segments(2)

    new_indexes = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0),
                   (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 0), (2, 1),
                   (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2),
                   (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),
                   (4, 4), (4, 5)]

    assert trajs.index.tolist() == new_indexes
Example #24
0
def test_project():

    trajs = Trajectories(data.directed_motion_trajs_df())
    trajs.rename(columns={'true_label': 'new_label'}, inplace=True)
    trajs.relabel()

    trajs.project([0, 1],
                  coords=['x', 'y'],
                  keep_first_time=False,
                  reference=None,
                  inplace=True,
                  progress=False)

    excepted = np.array([[ 0.27027431,  0.        ],
                         [-0.27027431,  0.        ],
                         [-0.25306519,  0.69683713],
                         [ 0.04633664,  0.31722648]])

    assert_array_almost_equal(excepted, trajs.loc[:,['x_proj', 'y_proj']].values[:4])

    trajs = trajs.project([0, 1],
                           coords=['x', 'y'],
                           keep_first_time=False,
                           reference=None,
                           inplace=False,
                           progress=False)

    assert_array_almost_equal(excepted, trajs.loc[:,['x_proj', 'y_proj']].values[:4])

    assert_raises(ValueError, trajs.project, [0, 1], coords=['x', 'y', 'z', 't'])
Example #25
0
def test_duplicate_segments():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())

    trajs = trajs.duplicate_segments(2)

    new_indexes = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0),
                   (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 0), (2, 1),
                   (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2),
                   (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),
                   (4, 4), (4, 5)]

    assert trajs.index.tolist() == new_indexes
def test_back_proj_pca():

    trajs = Trajectories(data.with_gaps_df())
    rotated, pca = transformation.do_pca(trajs, suffix='',
                                         append=False, return_pca=True)
    back_proj = transformation.back_proj_pca(rotated, pca, coords=['x', 'y', 'z'])
    assert_almost_equal(back_proj.iloc[0].x, trajs.iloc[0].x)
def test_write_hdf():

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)
    tmp_store = tempfile.NamedTemporaryFile(suffix='h5')
    with pd.get_store(tmp_store.name) as store:
        store['trajs'] = trajs
def test_brownian_gap_close():

    trajs = Trajectories(data.with_gaps_df())
    max_speed = 10.

    cost_func = BrownianGapCloseCostFunction(
        parameters={'max_speed': max_speed})

    in_idxs = [(3, 0), (3, 0), (5, 1), (13, 2), (13, 2), (16, 3)]
    out_idxs = [(5, 3), (7, 4), (7, 4), (15, 5), (18, 6), (18, 6)]

    cost_func.context['trajs'] = trajs
    cost_func.context['idxs_in'] = in_idxs
    cost_func.context['idxs_out'] = out_idxs

    cost_func.get_block()
    m = cost_func.mat

    m_true = [[
        np.nan, np.nan, np.nan, 2.0553543815820543, 45.74823093541038, np.nan,
        np.nan
    ], [np.nan, np.nan, np.nan, np.nan, 1.1530875267623917, np.nan, np.nan],
              [
                  np.nan, np.nan, np.nan, np.nan, np.nan, 0.8254178191605767,
                  23.84513283483594
              ],
              [
                  np.nan, np.nan, np.nan, np.nan, np.nan, np.nan,
                  4.916599888362159
              ], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
              [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
              [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]]

    assert_array_almost_equal(m, m_true)
Example #29
0
def test_relabel_fromzero():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    original_labels = trajs.labels

    idx = pd.IndexSlice
    trajs.loc[idx[:, 1], :] = 55

    relabeled = trajs.relabel_fromzero('label', inplace=False)
    assert np.all(relabeled.labels == original_labels)

    trajs.loc[idx[:, 1], :] = 55

    relabeled = trajs.relabel_fromzero('label', inplace=False)
    assert np.all(relabeled.labels == original_labels)
def test_get_speeds():

    trajs = Trajectories(data.brownian_trajs_df())
    speeds = trajs.get_speeds().tolist()

    real_speeds = [
        np.nan, np.nan, np.nan, np.nan, np.nan, 857.99153458573994,
        1596.9530747771976, 873.15267834726137, 1282.3088174598233,
        408.98588960526808, 378.40023709328955, 1809.9895146014187,
        917.93227668556324, 592.31881736181106, 0.48325048326444919,
        0.39551116881922965, 798.29858694043128, 1085.3214310682606,
        405.49164945495221, 550.37555144616226, 1406.707586739079,
        1031.9444945962532, 1077.6619763794718, 1445.7789239945778,
        739.66839622816326
    ]

    assert_almost_equal(speeds, real_speeds)
def test_get_bounds():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    trajs['t'] *= 10
    t_stamp_bounds = {0: (0, 4), 1: (0, 4), 2: (0, 4), 3: (0, 4), 4: (0, 4)}
    t_bounds = {
        0: (0.0, 40.0),
        1: (0.0, 40.0),
        2: (0.0, 40.0),
        3: (0.0, 40.0),
        4: (0.0, 40.0)
    }

    assert trajs.get_bounds() == t_stamp_bounds
    assert trajs.get_bounds(column='t') == t_bounds
Example #32
0
def load_multiple_excel(data_path, extra_sheet=None):

    xlsx_file = pd.io.excel.ExcelFile(data_path)

    lastsheet = xlsx_file.book.nsheets - 1
    global_metadata = pd.read_excel(data_path, lastsheet)

    global_metadata = {name: value for name, value
                       in zip(global_metadata['Name'],
                              global_metadata['Value'])}

    clusters = {}
    global_metadata['FileName'] = global_metadata['FileName'].replace(' ', '')
    for i, name in enumerate(global_metadata['FileName'].split(',')):

        ### Read the data
        trajs = pd.read_excel(data_path, i)
        trajs.t_stamp = trajs.t_stamp.astype(np.int)
        trajs.label = trajs.label.astype(np.int)
        trajs.set_index(['t_stamp', 'label'],
                        inplace=True)
        trajs = Trajectories(trajs.dropna())

        metadata = global_metadata.copy()
        metadata['FileName'] = os.path.join(
            os.path.dirname(data_path), name)

        store_path = metadata['FileName']
        if '.' in store_path[-6:]:
            store_path = ''.join(store_path.split('.')[:-1]+['.h5'])
        else:
            store_path = store_path+'.h5'
        store_path = os.path.join(
            os.path.dirname(data_path), store_path)

        ### The ObjectsIO class
        objectsio = ObjectsIO(metadata=metadata, store_path=store_path)
        cellcluster = CellCluster(objectsio=objectsio)
        cellcluster.trajs = trajs
        cellcluster.oio['trajs'] = trajs
        clusters[name] = cellcluster

    return clusters
def test_scale():

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)
    scaled = trajs.scale(factors=[2., 2., 2.],
                         coords=['x', 'y', 'z'],
                         inplace=False)
    assert_array_almost_equal(scaled[['x', 'y', 'z']] / 2.,
                              trajs[['x', 'y', 'z']])
    trajs = trajs.scale(factors=[2., 2., 2.],
                        coords=['x', 'y', 'z'],
                        inplace=True)
    assert_array_almost_equal(scaled[['x', 'y', 'z']], trajs[['x', 'y', 'z']])

    assert_raises(ValueError,
                  trajs.scale,
                  factors=[2., 2., 2.],
                  coords=['x', 'y'],
                  inplace=False)
def test_back_proj_interp():
    trajs = Trajectories(data.with_gaps_df())
    interpolated = transformation.time_interpolate(trajs,
                                                   sampling=3, s=0)
    back_proj = transformation.back_proj_interp(interpolated, trajs, 3)
    assert_almost_equal(back_proj.iloc[0].x, trajs.iloc[0].x)

    interpolated = transformation.time_interpolate(trajs,
                                                   sampling=3, s=2)
    back_proj = transformation.back_proj_interp(interpolated, trajs, 3)
    assert_almost_equal(back_proj.iloc[0].x, trajs.iloc[0].x)
def test_remove_spots():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    new_trajs = trajs.remove_spots([(3, 2), (0, 0)], inplace=False)

    new_indexes = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
                   (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
                   (3, 0), (3, 1), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2),
                   (4, 3), (4, 4)]

    assert new_trajs.index.tolist() == new_indexes

    new_trajs = trajs.remove_spots((0, 0), inplace=False)

    new_indexes = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
                   (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
                   (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1),
                   (4, 2), (4, 3), (4, 4)]

    assert new_trajs.index.tolist() == new_indexes
Example #36
0
def test_remove_spots():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    new_trajs = trajs.remove_spots([(3, 2), (0, 0)], inplace=False)

    new_indexes = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
                   (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
                   (3, 0), (3, 1), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2),
                   (4, 3), (4, 4)]

    assert new_trajs.index.tolist() == new_indexes

    new_trajs = trajs.remove_spots((0, 0), inplace=False)

    new_indexes = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
                   (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4),
                   (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1),
                   (4, 2), (4, 3), (4, 4)]

    assert new_trajs.index.tolist() == new_indexes
def test_reverse():
    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert trajs.reverse().shape == (25, 5)

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)
    trajs.reverse(inplace=True)

    assert trajs.shape == (25, 5)
Example #38
0
def test_radial_speed():
    trajs = Trajectories(data.with_gaps_df())
    trajs.reset_index(level='label', drop=True, inplace=True)
    trajs.set_index('true_label', drop=True, append=True, inplace=True)
    trajs.index.set_names(['t_stamp', 'label'], inplace=True)
    rd_speeds = rotation.radial_speed(trajs,
                                      in_coords=['x', 'y'],
                                      from_polar=False)
Example #39
0
def test_get_colors():
    """
    """

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    colors = trajs.get_colors()
    assert colors == {0: '#FF0000', 1: '#ADFF00', 2: '#00FFA9', 3: '#0408FF', 4: '#FF00AC'}

    colors = trajs.get_colors(alpha=0.5)
    assert colors == {0: '#FF000080',
                      1: '#ADFF0080',
                      2: '#00FFA980',
                      3: '#0408FF80',
                      4: '#FF00AC80'}

    colors = trajs.get_colors(rgba=True)
    good_colors = {0: (1.0, 0.0, 0.0, 1.0),
                   1: (0.67977809154279767, 1.0, 0.0, 1.0),
                   2: (0.0, 1.0, 0.66360181783683614, 1.0),
                   3: (0.015440535661123769, 0.031618928677752463, 1.0, 1.0),
                   4: (1.0, 0.0, 0.67279469669175529, 1.0)}
    assert colors == good_colors
Example #40
0
def test_cut_segments():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())

    trajs.cut_segments((2, 3), inplace=True)

    new_indexes = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1),
                   (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3),
                   (2, 4), (3, 0), (3, 1), (3, 2), (3, 4), (3, 5), (4, 0),
                   (4, 1), (4, 2), (4, 4), (4, 5)]

    assert trajs.index.tolist() == new_indexes

    trajs = Trajectories(data.brownian_trajs_df())

    trajs = trajs.cut_segments((2, 3), inplace=False)

    new_indexes = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1),
                   (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3),
                   (2, 4), (3, 0), (3, 1), (3, 2), (3, 4), (3, 5), (4, 0),
                   (4, 1), (4, 2), (4, 4), (4, 5)]

    assert trajs.index.tolist() == new_indexes
def test_interpolate():

    trajs = Trajectories(data.with_gaps_df())
    trajs.set_index('true_label', inplace=True, append=True)
    trajs.reset_index(level='label', drop=True, inplace=True)
    trajs.index.set_names(['t_stamp', 'label'], inplace=True)
    interpolated = trajs.time_interpolate(sampling=3, time_step=0.1, s=1)
    # t_stamps_in = interpolated.index.get_level_values('t_stamp')
    # indexer = t_stamps_in % 2 == 0
    # interpolated.loc[indexer].shape, trajs.shape
    # indexer = interpolated.t_stamps % 3 == 0
    # assert interpolated.loc[indexer].shape[0] == trajs.shape[0]
    dts = interpolated.get_segments()[0].t.diff().dropna()
    # All time points should be equaly spaced
    assert_almost_equal(dts.min(), dts.max())
Example #42
0
def linear_trajs():

    data = np.array([
        np.linspace(0, 30, 61),
        np.zeros(61),
        np.zeros(61),
        np.linspace(0, 120, 61)
    ])

    index = pd.MultiIndex.from_tuples([(t, i) for i in range(2)
                                       for t in range(61)],
                                      names=('t_stamp', 'label'))

    trajs = pd.DataFrame(np.vstack([data.T, data.T]),
                         index=index,
                         columns=['x', 'y', 'z',
                                  't']).sortlevel(['t_stamp', 'label'])
    return Trajectories(trajs)
Example #43
0
def test_interpolate():

    trajs = Trajectories(data.with_gaps_df())
    trajs.set_index('true_label', inplace=True, append=True)
    trajs.reset_index(level='label', drop=True, inplace=True)
    trajs.index.set_names(['t_stamp', 'label'], inplace=True)
    interpolated = trajs.time_interpolate(sampling=3, time_step=0.1, s=1)
    # t_stamps_in = interpolated.index.get_level_values('t_stamp')
    # indexer = t_stamps_in % 2 == 0
    # interpolated.loc[indexer].shape, trajs.shape
    # indexer = interpolated.t_stamps % 3 == 0
    # assert interpolated.loc[indexer].shape[0] == trajs.shape[0]
    dts = interpolated.get_segments()[0].t.diff().dropna()
    # All time points should be equaly spaced
    assert_almost_equal(dts.min(), dts.max())
def test_relabel_fromzero():
    """
    """

    trajs = Trajectories(data.brownian_trajs_df())
    original_labels = trajs.labels

    idx = pd.IndexSlice
    trajs.loc[idx[:, 1], :] = 55

    relabeled = trajs.relabel_fromzero('label', inplace=False)
    assert np.all(relabeled.labels == original_labels)

    trajs.loc[idx[:, 1], :] = 55

    relabeled = trajs.relabel_fromzero('label', inplace=False)
    assert np.all(relabeled.labels == original_labels)
def test_cut_segments():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())

    trajs.cut_segments((2, 3), inplace=True)

    new_indexes = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1),
                   (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3),
                   (2, 4), (3, 0), (3, 1), (3, 2), (3, 4), (3, 5), (4, 0),
                   (4, 1), (4, 2), (4, 4), (4, 5)]

    assert trajs.index.tolist() == new_indexes

    trajs = Trajectories(data.brownian_trajs_df())

    trajs = trajs.cut_segments((2, 3), inplace=False)

    new_indexes = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1),
                   (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3),
                   (2, 4), (3, 0), (3, 1), (3, 2), (3, 4), (3, 5), (4, 0),
                   (4, 1), (4, 2), (4, 4), (4, 5)]

    assert trajs.index.tolist() == new_indexes
Example #46
0
def test_relabel():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())
    trajs.columns = ['x', 'y', 'z', 'new_label', 't']
    trajs.relabel(inplace=True)

    new_values = [[1.933058243735795, -14.581064591435775, 11.603556633147544, 0.0],
                  [-12.862215173899491, -2.8611502446443238, -2.2738941196781424, 0.0],
                  [9.100887851132633, 2.837252570763561, 2.875753940450461, 0.0],
                  [-9.253860446235523, 11.345550876585719, 22.118203258275745, 0.0]]

    assert trajs.iloc[:4].values.tolist() == new_values

    trajs = Trajectories(data.brownian_trajs_df())
    trajs.columns = ['x', 'y', 'z', 'new_label', 't']
    trajs = trajs.relabel(inplace=False)

    new_values = [[1.933058243735795, -14.581064591435775, 11.603556633147544, 0.0],
                  [-12.862215173899491, -2.8611502446443238, -2.2738941196781424, 0.0],
                  [9.100887851132633, 2.837252570763561, 2.875753940450461, 0.0],
                  [-9.253860446235523, 11.345550876585719, 22.118203258275745, 0.0]]

    assert trajs.iloc[:4].values.tolist() == new_values
def test_copy():
    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert isinstance(trajs.copy(), Trajectories)
Example #48
0
def test_radial_speed():
    trajs = Trajectories(data.with_gaps_df())
    trajs.reset_index(level='label', drop=True, inplace=True)
    trajs.set_index('true_label', drop=True, append=True, inplace=True)
    trajs.index.set_names(['t_stamp', 'label'], inplace=True)
    rd_speeds = rotation.radial_speed(trajs, in_coords=['x', 'y'], from_polar=False)
Example #49
0
def test_empty():
    empty = Trajectories.empty_trajs(columns=['x', 'y'])

    assert empty.shape == (0, 2)
    assert empty.empty is True
Example #50
0
def test_polar_coords():

    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)
    polar = rotation.get_polar_coords(trajs, get_dtheta=True)
    assert_array_almost_equal(trajs.x, polar.rho * np.cos(polar.theta))
def test_merge_segments():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())

    trajs.reset_index(inplace=True)
    trajs.loc[15, ['label']] = 88
    trajs.loc[20, ['label']] = 88
    trajs.set_index(['t_stamp', 'label'], inplace=True)

    new_trajs = trajs.merge_segments([0, 88], inplace=False)

    assert_array_almost_equal(trajs.values, new_trajs.values)

    trajs = Trajectories(data.brownian_trajs_df())
    good_trajs = trajs.copy()

    trajs.reset_index(inplace=True)
    trajs.loc[15, ['label']] = 88
    trajs.loc[20, ['label']] = 88
    trajs.set_index(['t_stamp', 'label'], inplace=True)

    trajs.merge_segments([0, 88], inplace=True)

    assert_array_almost_equal(trajs.values, good_trajs.values)
Example #52
0
def test_copy():
    trajs = data.brownian_trajs_df()
    trajs = Trajectories(trajs)

    assert isinstance(trajs.copy(), Trajectories)
Example #53
0
def test_merge_segments():
    """
    """
    trajs = Trajectories(data.brownian_trajs_df())

    trajs.reset_index(inplace=True)
    trajs.loc[15, ['label']] = 88
    trajs.loc[20, ['label']] = 88
    trajs.set_index(['t_stamp', 'label'], inplace=True)

    new_trajs = trajs.merge_segments([0, 88], inplace=False)

    assert_array_almost_equal(trajs.values, new_trajs.values)

    trajs = Trajectories(data.brownian_trajs_df())
    good_trajs = trajs.copy()

    trajs.reset_index(inplace=True)
    trajs.loc[15, ['label']] = 88
    trajs.loc[20, ['label']] = 88
    trajs.set_index(['t_stamp', 'label'], inplace=True)

    trajs.merge_segments([0, 88], inplace=True)

    assert_array_almost_equal(trajs.values, good_trajs.values)
def test_empty():
    empty = Trajectories.empty_trajs(columns=['x', 'y'])

    assert empty.shape == (0, 2)
    assert empty.empty is True