Example #1
0
    def make_labeled_frames_from_generator(self, generator, data_provider):
        grouped_generator = group_examples_iter(generator)

        skeleton = self.bottomup_config.data.labels.skeletons[0]

        def make_lfs(video_ind, frame_ind, frame_examples):
            return make_grouped_labeled_frame(
                video_ind=video_ind,
                frame_ind=frame_ind,
                frame_examples=frame_examples,
                videos=data_provider.videos,
                skeleton=skeleton,
                image_key="image",
                points_key="predicted_instances",
                point_confidences_key="predicted_peak_scores",
                instance_score_key="predicted_instance_scores",
                tracker=self.tracker,
            )

        predicted_frames = []
        for (video_ind, frame_ind), grouped_examples in grouped_generator:
            predicted_frames.extend(make_lfs(video_ind, frame_ind, grouped_examples))

        if self.tracker:
            self.tracker.final_pass(predicted_frames)

        return predicted_frames
Example #2
0
def test_group_iterator():
    examples = make_examples()

    # Use iterator to build grouped dict
    grouped = dict()
    for key, val in group_examples_iter(examples):
        grouped[key] = val

    check_grouped_examples(grouped)
Example #3
0
    def make_labeled_frames_from_generator(self, generator, data_provider):
        grouped_generator = group_examples_iter(generator)

        skeleton = self.confmap_config.data.labels.skeletons[0]

        def make_lfs(video_ind, frame_ind, frame_examples):
            return make_grouped_labeled_frame(
                video_ind=video_ind,
                frame_ind=frame_ind,
                frame_examples=frame_examples,
                videos=data_provider.videos,
                skeleton=skeleton,
                points_key="predicted_instance",
                point_confidences_key="predicted_instance_confidences",
            )

        predicted_frames = []
        for (video_ind, frame_ind), grouped_examples in grouped_generator:
            predicted_frames.extend(make_lfs(video_ind, frame_ind, grouped_examples))

        return predicted_frames