def plot_results(res, path): """Some results plots""" if res is None or len(res) == 0: return counts = base.pivot_count_data(res, idxcols=['name','ref']) x = base.get_fractions_mapped(res) print (x) import seaborn as sns sns.set_style('white') sns.set_context("paper",font_scale=1.2) fig = plotting.plot_fractions(x) fig.savefig(os.path.join(path,'libraries_mapped.png')) fig = plotting.plot_sample_counts(counts) fig.savefig(os.path.join(path,'total_per_sample.png')) fig = plotting.plot_read_count_dists(counts) fig.savefig(os.path.join(path,'top_mapped.png')) scols,ncols = base.get_column_names(counts) for l,df in counts.groupby('ref'): if 'mirbase' in l: fig = plotting.plot_read_count_dists(df) fig.savefig(os.path.join(path,'top_%s.png' %l)) #if len(scols)>1: # fig = plotting.expression_clustermap(counts) # fig.savefig(os.path.join(path,'expr_map.png')) return
def plot_results(res, path): """Some results plots""" if res is None or len(res) == 0: return counts = base.pivot_count_data(res, idxcols=['name', 'ref']) x = base.get_fractions_mapped(res) print(x) import seaborn as sns sns.set_style('white') sns.set_context("paper", font_scale=1.2) fig = plotting.plot_fractions(x) fig.savefig(os.path.join(path, 'libraries_mapped.png')) fig = plotting.plot_sample_counts(counts) fig.savefig(os.path.join(path, 'total_per_sample.png')) fig = plotting.plot_read_count_dists(counts) fig.savefig(os.path.join(path, 'top_mapped.png')) scols, ncols = base.get_column_names(counts) for l, df in counts.groupby('ref'): if 'mirbase' in l: fig = plotting.plot_read_count_dists(df) fig.savefig(os.path.join(path, 'top_%s.png' % l)) #if len(scols)>1: # fig = plotting.expression_clustermap(counts) # fig.savefig(os.path.join(path,'expr_map.png')) return
def plot_feature_results(res, path): """plot results from feature counting""" if res is None or len(res) == 0: return counts = base.pivot_count_data(res, idxcols=['name','gene_name','gene_biotype']) x = base.get_fractions_mapped(res, by=['gene_biotype','label']) print (x) fig = plotting.plot_fractions(x) fig.savefig(os.path.join(path,'features_mapped.png')) fig = plotting.plot_sample_counts(counts) fig.savefig(os.path.join(path,'total_features_per_sample.png')) fig = plotting.plot_read_count_dists(counts) fig.savefig(os.path.join(path,'top_feature_counts.png')) return