Example #1
0
def optimizer_factory(hyperparams, loss):
    # Set learning rate method that will be used.
    if hyperparams["SGD"] is not None:
        from smartlearner.optimizers import SGD
        from smartlearner.direction_modifiers import ConstantLearningRate
        options = hyperparams["SGD"].split()
        optimizer = SGD(loss=loss)
        optimizer.append_direction_modifier(ConstantLearningRate(lr=float(options[0])))
        return optimizer

    elif hyperparams["AdaGrad"] is not None:
        from smartlearner.optimizers import AdaGrad
        options = hyperparams["AdaGrad"].split()
        lr = float(options[0])
        eps = float(options[1]) if len(options) > 1 else 1e-6
        return AdaGrad(loss=loss, lr=lr, eps=eps)

    elif hyperparams["Adam"] is not None:
        from smartlearner.optimizers import Adam
        options = hyperparams["Adam"].split()
        lr = float(options[0]) if len(options) > 0 else 0.0001
        return Adam(loss=loss, lr=lr)

    elif hyperparams["RMSProp"] is not None:
        from smartlearner.optimizers import RMSProp
        lr = float(hyperparams["RMSProp"])
        return RMSProp(loss=loss, lr=lr)

    elif hyperparams["Adadelta"]:
        from smartlearner.optimizers import Adadelta
        return Adadelta(loss=loss)

    else:
        raise ValueError("The optimizer is mandatory!")
Example #2
0
def test_simple_perceptron():
    with Timer("Loading dataset"):
        trainset, validset, testset = load_mnist()

    with Timer("Creating model"):
        # TODO: We should the number of different targets in the dataset,
        #       but I'm not sure how to do it right (keep in mind the regression?).
        output_size = 10
        model = Perceptron(trainset.input_size, output_size)
        model.initialize()  # By default, uniform initialization.

    with Timer("Building optimizer"):
        optimizer = SGD(loss=NLL(model, trainset))
        optimizer.append_direction_modifier(ConstantLearningRate(0.0001))

    with Timer("Building trainer"):
        # Train for 10 epochs
        batch_scheduler = MiniBatchScheduler(trainset, 100)

        trainer = Trainer(optimizer, batch_scheduler)
        trainer.append_task(stopping_criteria.MaxEpochStopping(10))

        # Print time for one epoch
        trainer.append_task(tasks.PrintEpochDuration())
        trainer.append_task(tasks.PrintTrainingDuration())

        # Print mean/stderror of classification errors.
        classif_error = views.ClassificationError(model.use, validset)
        trainer.append_task(tasks.Print("Validset - Classif error: {0:.1%} ± {1:.1%}", classif_error.mean, classif_error.stderror))

    with Timer("Training"):
        trainer.train()
    def _build_trainer(nb_epochs):
        print("Will train Convoluational Deep NADE for a total of {0} epochs.".
              format(nb_epochs))

        with Timer("Building model"):
            builder = DeepConvNADEBuilder(image_shape=image_shape,
                                          nb_channels=nb_channels,
                                          use_mask_as_input=use_mask_as_input)

            convnet_blueprint = "64@2x2(valid) -> 1@2x2(full)"
            fullnet_blueprint = "5 -> 16"
            print("Convnet:", convnet_blueprint)
            print("Fullnet:", fullnet_blueprint)
            builder.build_convnet_from_blueprint(convnet_blueprint)
            builder.build_fullnet_from_blueprint(fullnet_blueprint)

            model = builder.build()
            model.initialize(initer.UniformInitializer(random_seed=1234))

        with Timer("Building optimizer"):
            loss = BinaryCrossEntropyEstimateWithAutoRegressiveMask(
                model, trainset)

            optimizer = SGD(loss=loss)
            optimizer.append_direction_modifier(ConstantLearningRate(0.001))

        with Timer("Building trainer"):
            batch_scheduler = MiniBatchSchedulerWithAutoregressiveMask(
                trainset, batch_size)

            trainer = Trainer(optimizer, batch_scheduler)

            # Print time for one epoch
            trainer.append_task(tasks.PrintEpochDuration())
            trainer.append_task(tasks.PrintTrainingDuration())

            # Log training error
            loss_monitor = views.MonitorVariable(loss.loss)
            avg_loss = tasks.AveragePerEpoch(loss_monitor)
            accum = tasks.Accumulator(loss_monitor)
            logger = tasks.Logger(loss_monitor, avg_loss)
            trainer.append_task(logger, avg_loss, accum)

            # Print average training loss.
            trainer.append_task(
                tasks.Print("Avg. training loss:     : {}", avg_loss))

            # Print NLL mean/stderror.
            nll = views.LossView(
                loss=BinaryCrossEntropyEstimateWithAutoRegressiveMask(
                    model, validset),
                batch_scheduler=MiniBatchSchedulerWithAutoregressiveMask(
                    validset, batch_size=len(validset), keep_mask=True))
            trainer.append_task(
                tasks.Print("Validset - NLL          : {0:.2f} ± {1:.2f}",
                            nll.mean, nll.stderror))

            trainer.append_task(stopping_criteria.MaxEpochStopping(nb_epochs))

            return trainer, nll, logger
    def _build_experiment(self):
        # Create an Nd gaussian function to optimize. This function is not
        # well-conditioned and there exists no perfect gradient step to converge in
        # only one iteration.
        N = 4
        center = 5 * np.ones((1, N)).astype(floatX)
        param = sharedX(np.zeros((1, N)))
        cost = T.sum(
            0.5 *
            T.dot(T.dot((param - center), np.diag(1. / np.arange(1, N + 1))),
                  (param - center).T))
        loss = DummyLossWithGradient(cost, param)

        optimizer = SGD(loss)
        direction_modifier = DecreasingLearningRate(lr=self.lr, dc=self.dc)
        optimizer.append_direction_modifier(direction_modifier)
        trainer = Trainer(optimizer, DummyBatchScheduler())

        # Monitor the learning rate.
        logger = tasks.Logger(
            views.MonitorVariable(
                list(direction_modifier.parameters.values())[0]))
        trainer.append_task(logger)

        return trainer, logger, direction_modifier
Example #5
0
def optimizer_factory(hyperparams, loss):
    # Set learning rate method that will be used.
    if hyperparams["SGD"] is not None:
        from smartlearner.optimizers import SGD
        from smartlearner.direction_modifiers import ConstantLearningRate
        options = hyperparams["SGD"].split()
        optimizer = SGD(loss=loss)
        optimizer.append_direction_modifier(ConstantLearningRate(lr=float(options[0])))
        return optimizer

    elif hyperparams["AdaGrad"] is not None:
        from smartlearner.optimizers import AdaGrad
        options = hyperparams["AdaGrad"].split()
        lr = float(options[0])
        eps = float(options[1]) if len(options) > 1 else 1e-6
        return AdaGrad(loss=loss, lr=lr, eps=eps)

    elif hyperparams["Adam"] is not None:
        from smartlearner.optimizers import Adam
        options = hyperparams["Adam"].split()
        lr = float(options[0]) if len(options) > 0 else 0.0001
        return Adam(loss=loss, lr=lr)

    elif hyperparams["RMSProp"] is not None:
        from smartlearner.optimizers import RMSProp
        lr = float(hyperparams["RMSProp"])
        return RMSProp(loss=loss, lr=lr)

    elif hyperparams["Adadelta"]:
        from smartlearner.optimizers import Adadelta
        return Adadelta(loss=loss)

    else:
        raise ValueError("The optimizer is mandatory!")
Example #6
0
def test_simple_perceptron():
    with Timer("Loading dataset"):
        trainset, validset, testset = load_mnist()

    with Timer("Creating model"):
        # TODO: We should the number of different targets in the dataset,
        #       but I'm not sure how to do it right (keep in mind the regression?).
        output_size = 10
        model = Perceptron(trainset.input_size, output_size)
        model.initialize()  # By default, uniform initialization.

    with Timer("Building optimizer"):
        optimizer = SGD(loss=NLL(model, trainset))
        optimizer.append_update_rule(ConstantLearningRate(0.0001))

    with Timer("Building trainer"):
        # Train for 10 epochs
        batch_scheduler = MiniBatchScheduler(trainset, 100)

        trainer = Trainer(optimizer, batch_scheduler)
        trainer.append_task(stopping_criteria.MaxEpochStopping(10))

        # Print time for one epoch
        trainer.append_task(tasks.PrintEpochDuration())
        trainer.append_task(tasks.PrintTrainingDuration())

        # Print mean/stderror of classification errors.
        classif_error = views.ClassificationError(model.use, validset)
        trainer.append_task(
            tasks.Print("Validset - Classif error: {0:.1%} ± {1:.1%}",
                        classif_error.mean, classif_error.stderror))

    with Timer("Training"):
        trainer.train()
def test_simple_perceptron():
    # Loading dataset
    trainset, validset, testset = load_mnist()

    # Creating model
    nb_classes = 10
    model = Perceptron(trainset.input_size, nb_classes)
    model.initialize()  # By default, uniform initialization.

    # Building optimizer
    loss = NLL(model, trainset)
    optimizer = SGD(loss=loss)
    optimizer.append_direction_modifier(ConstantLearningRate(0.1))

    # Use mini batches of 100 examples.
    batch_scheduler = MiniBatchScheduler(trainset, 100)

    # Build trainer and add some tasks.
    trainer = Trainer(optimizer, batch_scheduler)

    # Print time for one epoch
    trainer.append_task(tasks.PrintEpochDuration())
    trainer.append_task(tasks.PrintTrainingDuration())

    # Log training error
    loss_monitor = views.MonitorVariable(loss.loss)
    avg_loss = tasks.AveragePerEpoch(loss_monitor)
    accum = tasks.Accumulator(loss_monitor)
    logger = tasks.Logger(loss_monitor, avg_loss)
    trainer.append_task(logger, avg_loss, accum)

    # Print NLL mean/stderror.
    nll = views.LossView(loss=NLL(model, validset),
                         batch_scheduler=FullBatchScheduler(validset))
    trainer.append_task(
        tasks.Print("Validset - NLL          : {0:.1%} ± {1:.1%}", nll.mean,
                    nll.stderror))

    # Print mean/stderror of classification errors.
    classif_error = views.LossView(
        loss=ClassificationError(model, validset),
        batch_scheduler=FullBatchScheduler(validset))
    trainer.append_task(
        tasks.Print("Validset - Classif error: {0:.1%} ± {1:.1%}",
                    classif_error.mean, classif_error.stderror))

    # Train for 10 epochs (stopping criteria should be added at the end).
    trainer.append_task(stopping_criteria.MaxEpochStopping(10))
    trainer.train()
Example #8
0
def test_sgd():
    # Create simple Nd gaussian functions to optimize. These functions are
    # (perfectly) well-conditioned so it should take only one gradient step
    # to converge using 1/L, where L is the largest eigenvalue of the hessian.
    max_epoch = 2
    for N in range(1, 5):
        center = np.arange(1, N+1)[None, :].astype(floatX)
        param = sharedX(np.zeros((1, N)))
        cost = T.sum(0.5*T.dot(T.dot((param-center), T.eye(N)), (param-center).T))
        loss = DummyLossWithGradient(cost, param)

        trainer = Trainer(SGD(loss), DummyBatchScheduler())
        trainer.append_task(stopping_criteria.MaxEpochStopping(max_epoch))

        # Monitor the gradient of `loss` w.r.t. to `param`.
        gparam = tasks.MonitorVariable(loss.gradients[param])
        trainer.append_task(gparam)
        trainer.train()

        # Since the problem is well-conditionned and we use an optimal gradient step 1/L,
        # two epochs should be enough for `param` to be around `center` and the gradients near 0.
        assert_array_almost_equal(param.get_value(), center)
        assert_array_almost_equal(gparam.value, 0.)

    # Create an Nd gaussian function to optimize. This function is not
    # well-conditioned and there exists no perfect gradient step to converge in
    # only one iteration.
    #cost = T.sum(N*0.5*T.dot(T.dot((param-center), np.diag(1./np.arange(1, N+1))), ((param-center).T)))
    max_epoch = 80
    N = 4
    center = 5*np.ones((1, N)).astype(floatX)
    param = sharedX(np.zeros((1, N)))
    cost = T.sum(0.5*T.dot(T.dot((param-center), np.diag(1./np.arange(1, N+1))), (param-center).T))
    loss = DummyLossWithGradient(cost, param)

    trainer = Trainer(SGD(loss), DummyBatchScheduler())
    trainer.append_task(stopping_criteria.MaxEpochStopping(max_epoch))
    #trainer.append_task(tasks.PrintVariable("Loss param   : {}", param))
    #trainer.append_task(tasks.PrintVariable("Loss gradient: {}", loss.gradients[param]))

    # Monitor the gradient of `loss` w.r.t. to `param`.
    gparam = tasks.MonitorVariable(loss.gradients[param])
    trainer.append_task(gparam)
    trainer.train()

    # Since the problem is well-conditionned and we use an optimal gradient step 1/L,
    # two epochs should be enough for `param` to be around `center` and the gradients near 0.
    assert_array_almost_equal(param.get_value(), center, decimal=6)
    assert_array_almost_equal(gparam.value, 0.)
Example #9
0
    def _build_experiment(self, threshold=1):
        # Create an Nd gaussian function to optimize. This function is not
        # well-conditioned and there exists no perfect gradient step to converge in
        # only one iteration.
        N = 4
        center = 5 * np.ones((1, N)).astype(floatX)
        param = sharedX(np.zeros((1, N)))
        cost = T.sum(
            0.5 *
            T.dot(T.dot((param - center), np.diag(1. / np.arange(1, N + 1))),
                  (param - center).T))
        loss = DummyLossWithGradient(cost, param)
        gradient_clipping = DirectionClipping(threshold=threshold)
        loss.append_gradient_modifier(gradient_clipping)

        optimizer = SGD(loss)
        trainer = Trainer(optimizer, DummyBatchScheduler())

        # Monitor the learning rate.
        logger = tasks.Logger(
            views.MonitorVariable(list(optimizer.directions.values())[0]),
            views.MonitorVariable(list(loss.gradients.values())[0]),
            views.MonitorVariable(list(loss.orig_gradients.values())[0]),
            views.MonitorVariable(gradient_clipping.grad_norm))
        trainer.append_task(logger)

        return trainer, logger, gradient_clipping
def test_simple_perceptron():
    # Loading dataset
    trainset, validset, testset = load_mnist()

    # Creating model
    nb_classes = 10
    model = Perceptron(trainset.input_size, nb_classes)
    model.initialize()  # By default, uniform initialization.

    # Building optimizer
    loss = NLL(model, trainset)
    optimizer = SGD(loss=loss)
    optimizer.append_direction_modifier(ConstantLearningRate(0.1))

    # Use mini batches of 100 examples.
    batch_scheduler = MiniBatchScheduler(trainset, 100)

    # Build trainer and add some tasks.
    trainer = Trainer(optimizer, batch_scheduler)

    # Print time for one epoch
    trainer.append_task(tasks.PrintEpochDuration())
    trainer.append_task(tasks.PrintTrainingDuration())

    # Log training error
    loss_monitor = views.MonitorVariable(loss.loss)
    avg_loss = tasks.AveragePerEpoch(loss_monitor)
    accum = tasks.Accumulator(loss_monitor)
    logger = tasks.Logger(loss_monitor, avg_loss)
    trainer.append_task(logger, avg_loss, accum)

    # Print NLL mean/stderror.
    nll = views.LossView(loss=NLL(model, validset), batch_scheduler=FullBatchScheduler(validset))
    trainer.append_task(tasks.Print("Validset - NLL          : {0:.1%} ± {1:.1%}",
                                    nll.mean, nll.stderror))

    # Print mean/stderror of classification errors.
    classif_error = views.LossView(loss=ClassificationError(model, validset),
                                   batch_scheduler=FullBatchScheduler(validset))
    trainer.append_task(tasks.Print("Validset - Classif error: {0:.1%} ± {1:.1%}",
                                    classif_error.mean, classif_error.stderror))

    # Train for 10 epochs (stopping criteria should be added at the end).
    trainer.append_task(stopping_criteria.MaxEpochStopping(10))
    trainer.train()
    def _build_experiment(self):
        # Create an Nd gaussian function to optimize. This function is not
        # well-conditioned and there exists no perfect gradient step to converge in
        # only one iteration.
        N = 4
        center = 5*np.ones((1, N)).astype(floatX)
        param = sharedX(np.zeros((1, N)))
        cost = T.sum(0.5*T.dot(T.dot((param-center), np.diag(1./np.arange(1, N+1))), (param-center).T))
        loss = DummyLossWithGradient(cost, param)

        optimizer = SGD(loss)
        direction_modifier = ConstantLearningRate(lr=self.lr)
        optimizer.append_direction_modifier(direction_modifier)
        trainer = Trainer(optimizer, DummyBatchScheduler())

        # Monitor the learning rate.
        logger = tasks.Logger(views.MonitorVariable(list(direction_modifier.parameters.values())[0]))
        trainer.append_task(logger)

        return trainer, logger, direction_modifier
Example #12
0
def test_simple_convnade():
    nb_kernels = 8
    kernel_shape = (2, 2)
    hidden_activation = "sigmoid"
    consider_mask_as_channel = True
    batch_size = 1024
    ordering_seed = 1234
    max_epoch = 3
    nb_orderings = 1

    print("Will train Convoluational Deep NADE for a total of {0} epochs.".
          format(max_epoch))

    with Timer("Loading/processing binarized MNIST"):
        trainset, validset, testset = load_binarized_mnist()

        # Extract the center patch (4x4 pixels) of each image.
        indices_to_keep = [
            348, 349, 350, 351, 376, 377, 378, 379, 404, 405, 406, 407, 432,
            433, 434, 435
        ]

        trainset = Dataset(trainset.inputs.get_value()[:, indices_to_keep],
                           trainset.inputs.get_value()[:, indices_to_keep],
                           name="trainset")
        validset = Dataset(validset.inputs.get_value()[:, indices_to_keep],
                           validset.inputs.get_value()[:, indices_to_keep],
                           name="validset")
        testset = Dataset(testset.inputs.get_value()[:, indices_to_keep],
                          testset.inputs.get_value()[:, indices_to_keep],
                          name="testset")

        image_shape = (4, 4)
        nb_channels = 1

    with Timer("Building model"):
        builder = DeepConvNADEBuilder(image_shape=image_shape,
                                      nb_channels=nb_channels,
                                      consider_mask_as_channel=True)

        convnet_blueprint = "64@2x2(valid) -> 1@2x2(full)"
        fullnet_blueprint = "5 -> 16"
        print("Convnet:", convnet_blueprint)
        print("Fullnet:", fullnet_blueprint)
        builder.build_convnet_from_blueprint(convnet_blueprint)
        builder.build_fullnet_from_blueprint(fullnet_blueprint)

        model = builder.build()
        model.initialize()  # By default, uniform initialization.

    with Timer("Building optimizer"):
        loss = BinaryCrossEntropyEstimateWithAutoRegressiveMask(
            model, trainset)

        optimizer = SGD(loss=loss)
        optimizer.append_direction_modifier(ConstantLearningRate(0.001))

    with Timer("Building trainer"):
        batch_scheduler = MiniBatchSchedulerWithAutoregressiveMask(
            trainset, batch_size)

        trainer = Trainer(optimizer, batch_scheduler)

        trainer.append_task(stopping_criteria.MaxEpochStopping(max_epoch))

        # Print time for one epoch
        trainer.append_task(tasks.PrintEpochDuration())
        trainer.append_task(tasks.PrintTrainingDuration())

        # Log training error
        loss_monitor = views.MonitorVariable(loss.loss)
        avg_loss = tasks.AveragePerEpoch(loss_monitor)
        accum = tasks.Accumulator(loss_monitor)
        logger = tasks.Logger(loss_monitor, avg_loss)
        trainer.append_task(logger, avg_loss, accum)

        # Print average training loss.
        trainer.append_task(
            tasks.Print("Avg. training loss:     : {}", avg_loss))

        # Print NLL mean/stderror.
        nll = views.LossView(
            loss=BinaryCrossEntropyEstimateWithAutoRegressiveMask(
                model, validset),
            batch_scheduler=MiniBatchSchedulerWithAutoregressiveMask(
                validset, batch_size=len(validset)))
        trainer.append_task(
            tasks.Print("Validset - NLL          : {0:.2f} ± {1:.2f}",
                        nll.mean, nll.stderror))

        trainer.build_theano_graph()

    with Timer("Training"):
        trainer.train()

    with Timer("Checking the probs for all possible inputs sum to 1"):
        # rng = np.random.RandomState(ordering_seed)
        D = np.prod(image_shape)

        batch_scheduler = BatchSchedulerWithAutoregressiveMasks(
            validset,
            batch_size=len(validset),
            batch_id=0,
            ordering_id=0,
            concatenate_mask=model.nb_channels == 2,
            seed=42)
        nll = views.LossView(
            loss=NllUsingBinaryCrossEntropyWithAutoRegressiveMask(
                model, validset, batch_scheduler.mod),
            batch_scheduler=batch_scheduler)
        nlls_xod_given_xoltd = nll.losses.view(Status())
        nlls = np.sum(nlls_xod_given_xoltd.reshape(-1, len(validset)), axis=0)
        nll_validset = np.mean(nlls)
        print("Sum of NLL for validset:", nll_validset)

        inputs = cartesian([[0, 1]] * int(D), dtype=np.float32)
        dataset = ReconstructionDataset(inputs)
        batch_scheduler = BatchSchedulerWithAutoregressiveMasks(
            dataset,
            batch_size=len(dataset),
            batch_id=0,
            ordering_id=0,
            concatenate_mask=model.nb_channels == 2,
            seed=42)
        nll = views.LossView(
            loss=NllUsingBinaryCrossEntropyWithAutoRegressiveMask(
                model, dataset, batch_scheduler.mod),
            batch_scheduler=batch_scheduler)
        nlls_xod_given_xoltd = nll.losses.view(Status())
        nlls = np.sum(nlls_xod_given_xoltd.reshape(-1, len(dataset)), axis=0)
        p_x = np.exp(np.logaddexp.reduce(-nlls))
        print("Sum of p(x) for all x:", p_x)
        assert_almost_equal(p_x, 1., decimal=5)
def test_new_fprop_matches_old_fprop():
    nb_kernels = 8
    kernel_shape = (2, 2)
    hidden_activation = "sigmoid"
    use_mask_as_input = True
    batch_size = 1024
    ordering_seed = 1234
    max_epoch = 10
    nb_orderings = 1

    print("Will train Convoluational Deep NADE for a total of {0} epochs.".
          format(max_epoch))

    with Timer("Loading/processing binarized MNIST"):
        trainset, validset, testset = load_binarized_mnist()

        # Extract the center patch (4x4 pixels) of each image.
        indices_to_keep = [
            348, 349, 350, 351, 376, 377, 378, 379, 404, 405, 406, 407, 432,
            433, 434, 435
        ]

        trainset = Dataset(trainset.inputs.get_value()[:, indices_to_keep],
                           trainset.inputs.get_value()[:, indices_to_keep],
                           name="trainset")
        validset = Dataset(validset.inputs.get_value()[:, indices_to_keep],
                           validset.inputs.get_value()[:, indices_to_keep],
                           name="validset")
        testset = Dataset(testset.inputs.get_value()[:, indices_to_keep],
                          testset.inputs.get_value()[:, indices_to_keep],
                          name="testset")

        image_shape = (4, 4)
        nb_channels = 1 + (use_mask_as_input is True)

    with Timer("Building model"):
        builder = DeepConvNADEBuilder(image_shape=image_shape,
                                      nb_channels=nb_channels,
                                      use_mask_as_input=use_mask_as_input)

        convnet_blueprint = "64@2x2(valid) -> 1@2x2(full)"
        fullnet_blueprint = "5 -> 16"
        print("Convnet:", convnet_blueprint)
        print("Fullnet:", fullnet_blueprint)
        builder.build_convnet_from_blueprint(convnet_blueprint)
        builder.build_fullnet_from_blueprint(fullnet_blueprint)

        model = builder.build()
        model.initialize()  # By default, uniform initialization.

    with Timer("Building optimizer"):
        loss = BinaryCrossEntropyEstimateWithAutoRegressiveMask(
            model, trainset)

        optimizer = SGD(loss=loss)
        optimizer.append_direction_modifier(ConstantLearningRate(0.001))

    with Timer("Building trainer"):
        batch_scheduler = MiniBatchSchedulerWithAutoregressiveMask(
            trainset, batch_size, use_mask_as_input=use_mask_as_input)

        trainer = Trainer(optimizer, batch_scheduler)

        # Print time for one epoch
        trainer.append_task(tasks.PrintEpochDuration())
        trainer.append_task(tasks.PrintTrainingDuration())

        # Log training error
        loss_monitor = views.MonitorVariable(loss.loss)
        avg_loss = tasks.AveragePerEpoch(loss_monitor)
        accum = tasks.Accumulator(loss_monitor)
        logger = tasks.Logger(loss_monitor, avg_loss)
        trainer.append_task(logger, avg_loss, accum)

        # Print average training loss.
        trainer.append_task(
            tasks.Print("Avg. training loss:     : {}", avg_loss))

        trainer.append_task(stopping_criteria.MaxEpochStopping(max_epoch))

        trainer.build_theano_graph()

    with Timer("Training"):
        trainer.train()

    mask_o_lt_d = batch_scheduler._shared_batch_mask
    fprop_output, fprop_pre_output = model.fprop(
        trainset.inputs, mask_o_lt_d, return_output_preactivation=True)
    model_output = model.get_output(
        T.concatenate([trainset.inputs * mask_o_lt_d, mask_o_lt_d], axis=1))
    assert_array_equal(model_output.eval(), fprop_pre_output.eval())
    print(np.sum(abs(model_output.eval() - fprop_pre_output.eval())))
def test_simple_convnade():
    nb_kernels = 8
    kernel_shape = (2, 2)
    hidden_activation = "sigmoid"
    use_mask_as_input = True
    batch_size = 1024
    ordering_seed = 1234
    max_epoch = 3
    nb_orderings = 1

    print("Will train Convoluational Deep NADE for a total of {0} epochs.".
          format(max_epoch))

    with Timer("Loading/processing binarized MNIST"):
        trainset, validset, testset = load_binarized_mnist()

        # Extract the center patch (4x4 pixels) of each image.
        indices_to_keep = [
            348, 349, 350, 351, 376, 377, 378, 379, 404, 405, 406, 407, 432,
            433, 434, 435
        ]

        trainset = Dataset(trainset.inputs.get_value()[:, indices_to_keep],
                           trainset.inputs.get_value()[:, indices_to_keep],
                           name="trainset")
        validset = Dataset(validset.inputs.get_value()[:, indices_to_keep],
                           validset.inputs.get_value()[:, indices_to_keep],
                           name="validset")
        testset = Dataset(testset.inputs.get_value()[:, indices_to_keep],
                          testset.inputs.get_value()[:, indices_to_keep],
                          name="testset")

        image_shape = (4, 4)
        nb_channels = 1

    with Timer("Building model"):
        builder = DeepConvNADEBuilder(image_shape=image_shape,
                                      nb_channels=nb_channels,
                                      use_mask_as_input=use_mask_as_input)

        convnet_blueprint = "64@2x2(valid) -> 1@2x2(full)"
        fullnet_blueprint = "5 -> 16"
        print("Convnet:", convnet_blueprint)
        print("Fullnet:", fullnet_blueprint)
        builder.build_convnet_from_blueprint(convnet_blueprint)
        builder.build_fullnet_from_blueprint(fullnet_blueprint)

        model = builder.build()
        model.initialize()  # By default, uniform initialization.

    with Timer("Building optimizer"):
        loss = BinaryCrossEntropyEstimateWithAutoRegressiveMask(
            model, trainset)

        optimizer = SGD(loss=loss)
        optimizer.append_direction_modifier(ConstantLearningRate(0.001))

    with Timer("Building trainer"):
        batch_scheduler = MiniBatchSchedulerWithAutoregressiveMask(
            trainset, batch_size)

        trainer = Trainer(optimizer, batch_scheduler)

        trainer.append_task(stopping_criteria.MaxEpochStopping(max_epoch))

        # Print time for one epoch
        trainer.append_task(tasks.PrintEpochDuration())
        trainer.append_task(tasks.PrintTrainingDuration())

        # Log training error
        loss_monitor = views.MonitorVariable(loss.loss)
        avg_loss = tasks.AveragePerEpoch(loss_monitor)
        accum = tasks.Accumulator(loss_monitor)
        logger = tasks.Logger(loss_monitor, avg_loss)
        trainer.append_task(logger, avg_loss, accum)

        # Print average training loss.
        trainer.append_task(
            tasks.Print("Avg. training loss:     : {}", avg_loss))

        # Print NLL mean/stderror.
        nll = views.LossView(
            loss=BinaryCrossEntropyEstimateWithAutoRegressiveMask(
                model, validset),
            batch_scheduler=MiniBatchSchedulerWithAutoregressiveMask(
                validset, batch_size=len(validset)))
        trainer.append_task(
            tasks.Print("Validset - NLL          : {0:.2f} ± {1:.2f}",
                        nll.mean, nll.stderror))

        trainer.build_theano_graph()

    with Timer("Training"):
        trainer.train()

    with Timer("Checking the probs for all possible inputs sum to 1"):
        rng = np.random.RandomState(ordering_seed)
        D = np.prod(image_shape)
        inputs = cartesian([[0, 1]] * int(D), dtype=np.float32)
        ordering = np.arange(D, dtype=np.int32)
        rng.shuffle(ordering)

        symb_input = T.vector("input")
        symb_input.tag.test_value = inputs[-len(inputs) // 4]
        symb_ordering = T.ivector("ordering")
        symb_ordering.tag.test_value = ordering
        nll_of_x_given_o = theano.function([symb_input, symb_ordering],
                                           model.nll_of_x_given_o(
                                               symb_input, symb_ordering),
                                           name="nll_of_x_given_o")
        #theano.printing.pydotprint(nll_of_x_given_o, '{0}_nll_of_x_given_o_{1}'.format(model.__class__.__name__, theano.config.device), with_ids=True)

        for i in range(nb_orderings):
            print("Ordering:", ordering)
            ordering = np.arange(D, dtype=np.int32)
            rng.shuffle(ordering)

            nlls = []
            for no, input in enumerate(inputs):
                print("{}/{}".format(no, len(inputs)), end='\r')
                nlls.append(nll_of_x_given_o(input, ordering))

            print("{}/{} Done".format(len(inputs), len(inputs)))

            p_x = np.exp(np.logaddexp.reduce(-np.array(nlls)))
            print("Sum of p(x) for all x:", p_x)
            assert_almost_equal(p_x, 1., decimal=5)