Example #1
0
    def training_data_processing(spec_file,
                                 annotation_file,
                                 mean,
                                 std,
                                 spec_file2=None,
                                 annotation_file2=None):
        spec = np.load(spec_file)
        spec, stretching_rate = pitch_time_deformation_spec(spec)
        spec = random_filter_spec(spec)
        spec = random_loudness_spec(spec)
        label = preprocessing.get_label(annotation_file,
                                        spec.shape[1],
                                        stretching_rate=stretching_rate)

        if not (spec_file2 is None):
            spec2 = np.load(spec_file2)
            spec2, stretching_rate2 = pitch_time_deformation_spec(spec2)
            spec2 = random_filter_spec(spec2)
            spec2 = random_loudness_spec(spec2)
            label2 = preprocessing.get_label(annotation_file2,
                                             spec2.shape[1],
                                             stretching_rate=stretching_rate2)
            spec, label = block_mixing_spec(spec, spec2, label, label2)

        mels = preprocessing.get_scaled_mel_bands(spec)
        mels = preprocessing.normalize(mels, mean, std)
        return mels, label
Example #2
0
def validation_data_processing(spec_file, annotation_file, mean, std):
    spec = np.load(spec_file)

    mels = preprocessing.get_scaled_mel_bands(spec)
    mels = preprocessing.normalize(mels, mean, std)
    n_frame = mels.shape[1]
    label = preprocessing.get_label(
        annotation_file, n_frame, stretching_rate=1)
    return mels, label
Example #3
0
def savespec_and_get_bands(file):
    audio = utils.load_audio(file)
    if len(audio) > 200:
        spec = preprocessing.get_spectrogram(audio)
        bands = preprocessing.get_scaled_mel_bands(spec)

        length = bands.shape[1]
        utils.save_matrix(spec, file.replace(".wav", ''))
        return length, bands
    else:
        print("empty file: " + file)
        return 0, []
def test_data_processing(spec):
    from smd.data import preprocessing

    mels = preprocessing.get_scaled_mel_bands(spec)
    mels = preprocessing.normalize(mels, mean, std)
    return mels.T