def gauss_smooth(mask, FILTER_SIZE): SIGMA = 0.3 * ( (FILTER_SIZE - 1) * 0.5 - 1) + 0.8 #0.3*(FILTER_SIZE-1) + 0.8 smoother = Smoother({'data': mask}, FILTER_SIZE, SIGMA) new_mask = smoother.get_output() return new_mask
def gauss_smooth(self, mask, FILTER_SIZE): ''' A tensorflow gauss smooth function. Args: mask: A 'Tensor' that to be smoothed FILTER_SIZE: Spatial size of gaussian filter Output: A gauss smoothed 'Tensor' of same size as 'mask' ''' SIGMA = 0.3 * ( (FILTER_SIZE - 1) * 0.5 - 1) + 0.8 #0.3*(FILTER_SIZE-1) + 0.8 smoother = Smoother({'data': mask}, FILTER_SIZE, SIGMA) new_mask = smoother.get_output() return new_mask
def smooth(): input_image = tf.placeholder(tf.float32, shape=[1, None, None, 3]) smoother = Smoother({'data': input_image}, FILTER_SIZE, SIGMA) smoothed_image = smoother.get_output() init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) image = Image.open(FLAGS.image_path) image = np.array(image, dtype=np.float32) image = image.reshape((1, image.shape[0], image.shape[1], 1)) smoothed = sess.run(smoothed_image, feed_dict={image_input: image}) smoothed = smoothed / np.max(smoothed) out_image = np.squeeze(smoothed) out_image = Image.fromarray(np.squeeze(np.uint8(out_image * 255)))
def smooth(): Image_Placeholder = tf.placeholder( tf.float32, shape = [1, None, None, 3]) smoother = Smoother({'data':Image_Placeholder}, FILTER_SIZE, SIGMA) smoothed_image = smoother.get_output() init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) image = Image.open(FLAGS.image_path) image = np.array(image, dtype = np.float32) image = image.reshape((1, image.shape[0], image.shape[1], 3)) smoothed = sess.run(smoothed_image, feed_dict = {Image_Placeholder: image}) smoothed = smoothed / np.max(smoothed) out_image = np.squeeze(smoothed) out_image = Image.fromarray(np.squeeze(np.uint8(out_image * 255))) out_image.show()