def model_selection(self): X = np.vstack([data_min, data_maj]) y = np.hstack( [np.repeat(1, len(data_min)), np.repeat(0, len(data_maj))]) # setting cache path cache_path = os.path.join(os.path.expanduser('~'), 'smote_test') if not os.path.exists(cache_path): os.mkdir(cache_path) # prepare dataset dataset = {'data': X, 'target': y, 'name': 'ballpark_data'} # instantiating classifiers knn_classifier = KNeighborsClassifier() dt_classifier = DecisionTreeClassifier() # instantiate the validation object oversamplers = sv.get_n_quickest_oversamplers(5) classifiers = [knn_classifier, dt_classifier] samp_obj, cl_obj = sv.model_selection(dataset=dataset, samplers=oversamplers, classifiers=classifiers, cache_path=cache_path, n_jobs=1) self.assertTrue((samp_obj is not None) and (cl_obj is not None)) results = sv.read_oversampling_results(datasets=[dataset], cache_path=cache_path) self.assertTrue(len(results) > 0)
# import datasets from sklearn import datasets # setting cache path cache_path = os.path.join(os.path.expanduser('~'), 'workspaces', 'smote_test') # prepare dataset dataset = datasets.load_breast_cancer() dataset = { 'data': dataset['data'], 'target': dataset['target'], 'name': 'breast_cancer' } # instantiating classifiers knn_classifier = KNeighborsClassifier() dt_classifier = DecisionTreeClassifier() # instantiate the validation object samp_obj, cl_obj = sv.model_selection( datasets=[dataset], samplers=sv.get_n_quickest_oversamplers(5), classifiers=[knn_classifier, dt_classifier], cache_path=cache_path, n_jobs=5, max_n_sampler_parameters=35) # oversampling and classifier training X_samp, y_samp = samp_obj.sample(dataset['data'], dataset['target']) cl_obj.fit(X_samp, y_samp)
def test_model_selection(): data_min = np.array([[5.7996138, -0.25574582], [3.0637093, 2.11750874], [4.91444087, -0.72380123], [1.06414164, 0.08694243], [2.59071708, 0.75283568], [3.44834937, 1.46118085], [2.8036378, 0.69553702], [3.57901791, 0.71870743], [3.81529064, 0.62580927], [3.05005506, 0.33290343], [1.83674689, 1.06998465], [2.08574889, -0.32686821], [3.49417022, -0.92155623], [2.33920982, -1.59057568], [1.95332431, -0.84533309], [3.35453368, -1.10178101], [4.20791149, -1.41874985], [2.25371221, -1.45181929], [2.87401694, -0.74746037], [1.84435381, 0.15715329]]) data_maj = np.array([[-1.40972752, 0.07111486], [-1.1873495, -0.20838002], [0.51978825, 2.1631319], [-0.61995016, -0.45111475], [2.6093289, -0.40993063], [-0.06624482, -0.45882838], [-0.28836659, -0.59493865], [0.345051, 0.05188811], [1.75694985, 0.16685025], [0.52901288, -0.62341735], [0.09694047, -0.15811278], [-0.37490451, -0.46290818], [-0.32855088, -0.20893795], [-0.98508364, -0.32003935], [0.07579831, 1.36455355], [-1.44496689, -0.44792395], [1.17083343, -0.15804265], [1.73361443, -0.06018163], [-0.05139342, 0.44876765], [0.33731075, -0.06547923], [-0.02803696, 0.5802353], [0.20885408, 0.39232885], [0.22819482, 2.47835768], [1.48216063, 0.81341279], [-0.6240829, -0.90154291], [0.54349668, 1.4313319], [-0.65925018, 0.78058634], [-1.65006105, -0.88327625], [-1.49996313, -0.99378106], [0.31628974, -0.41951526], [0.64402186, 1.10456105], [-0.17725369, -0.67939216], [0.12000555, -1.18672234], [2.09793313, 1.82636262], [-0.11711376, 0.49655609], [1.40513236, 0.74970305], [2.40025472, -0.5971392], [-1.04860983, 2.05691699], [0.74057019, -1.48622202], [1.32230881, -2.36226588], [-1.00093975, -0.44426212], [-2.25927766, -0.55860504], [-1.12592836, -0.13399132], [0.14500925, -0.89070934], [0.90572513, 1.23923502], [-1.25416346, -1.49100593], [0.51229813, 1.54563048], [-1.36854287, 0.0151081], [0.08169257, -0.69722099], [-0.73737846, 0.42595479], [0.02465411, -0.36742946], [-1.14532211, -1.23217124], [0.98038343, 0.59259824], [-0.20721222, 0.68062552], [-2.21596433, -1.96045872], [-1.20519292, -1.8900018], [0.47189299, -0.4737293], [1.18196143, 0.85320018], [0.03255894, -0.77687178], [0.32485141, -0.34609381]]) X = np.vstack([data_min, data_maj]) y = np.hstack([np.repeat(1, len(data_min)), np.repeat(0, len(data_maj))]) # setting cache path cache_path = os.path.join(os.path.expanduser('~'), 'smote_test') if not os.path.exists(cache_path): os.mkdir(cache_path) # prepare dataset dataset = {'data': X, 'target': y, 'name': 'ballpark_data'} # instantiating classifiers knn_classifier = KNeighborsClassifier() dt_classifier = DecisionTreeClassifier() # instantiate the validation object samp_obj, cl_obj = sv.model_selection( dataset=dataset, samplers=sv.get_n_quickest_oversamplers(5), classifiers=[knn_classifier, dt_classifier], cache_path=cache_path, n_jobs=1) assert (not samp_obj is None) and (not cl_obj is None) results = sv.read_oversampling_results(datasets=[dataset], cache_path=cache_path) assert len(results) > 0
# Executing the model selection using 5 parallel jobs and at most 35 random but meaningful parameter combinations # with the oversamplers. samplers = [ sv.polynom_fit_SMOTE, sv.ProWSyn, sv.SMOTE_IPF, sv.Lee, sv.SMOBD, sv.G_SMOTE, sv.CCR, sv.LVQ_SMOTE, sv.Assembled_SMOTE, sv.SMOTE_TomekLinks, sv.SMOTE, sv.Random_SMOTE, sv.CE_SMOTE, sv.SMOTE_Cosine, sv.Selected_SMOTE, sv.Supervised_SMOTE, sv.CBSO, sv.cluster_SMOTE, sv.NEATER, sv.ADASYN, sv.NoSMOTE ] samp_obj, cl_obj = sv.model_selection(dataset=dataset, samplers=samplers, classifiers=all_classifiers, cache_path=cache_path, n_jobs=5, max_samp_par_comb=25, random_state=5) # In[6]: # Oversampling and training the classifier providing the best results in the model selection procedure results = sv.read_oversampling_results([dataset], cache_path, all_results=False) results.to_csv('aggregated_results.csv') results = sv.read_oversampling_results([dataset], cache_path, all_results=True)
'target': dataset['target'], 'name': 'breast_cancer' } # In[4]: # Specifying the classifiers. knn_classifier = KNeighborsClassifier() dt_classifier = DecisionTreeClassifier() # In[5]: # Executing the model selection using 5 parallel jobs and at most 35 random but meaningful parameter combinations # with the oversamplers. samp_obj, cl_obj = sv.model_selection( dataset=dataset, samplers=sv.get_n_quickest_oversamplers(5), classifiers=[knn_classifier, dt_classifier], cache_path=cache_path, n_jobs=5, max_samp_par_comb=35) # In[6]: # Oversampling and training the classifier providing the best results in the model selection procedure X_samp, y_samp = samp_obj.sample(dataset['data'], dataset['target']) cl_obj.fit(X_samp, y_samp)
sv.OUPS, sv.NoSMOTE], classifiers= [KNeighborsClassifier()], validator= RepeatedStratifiedKFold(n_repeats= 3, n_splits= 5), cache_path= cache_path, max_samp_par_comb= 3, all_results= True, n_jobs= 6) print(results[['sampler', 'sampler_parameters', 'auc']]) #%% oversampler selection from sklearn.tree import DecisionTreeClassifier np.random.seed(random_seed) samp, clas= sv.model_selection(dataset= ecoli, samplers= sv.get_all_oversamplers(), classifiers= [KNeighborsClassifier(), DecisionTreeClassifier()], validator= RepeatedStratifiedKFold(n_repeats= 3, n_splits= 5), score= 'auc', cache_path= cache_path, max_samp_par_comb= 3, n_jobs= 6) print(samp) print(clas)