from smst.models import dft (fs, x) = audio.read_wav('../../../sounds/oboe-A4.wav') M = 601 w = np.blackman(M) N = 1024 hN = N / 2 Ns = 512 hNs = Ns / 2 H = Ns / 4 pin = 5000 t = -70 x1 = x[pin:pin + w.size] mX, pX = dft.from_audio(x1, w, N) ploc = peaks.find_peaks(mX, t) iploc, ipmag, ipphase = peaks.interpolate_peaks(mX, pX, ploc) freqs = iploc * fs / N Y = synth.spectrum_for_sinusoids(freqs, ipmag, ipphase, Ns, fs) mY = 20 * np.log10(abs(Y[:hNs])) pY = np.unwrap(np.angle(Y[:hNs])) y = fftshift(ifft(Y)) * sum(blackmanharris(Ns)) sw = np.zeros(Ns) ow = triang(2 * H); sw[hNs - H:hNs + H] = ow bh = blackmanharris(Ns) bh = bh / sum(bh) sw[hNs - H:hNs + H] = sw[hNs - H:hNs + H] / bh[hNs - H:hNs + H] plt.figure(1, figsize=(9, 6)) plt.subplot(3, 1, 1)
import numpy as np from smst.utils import audio, peaks from smst.models import dft (fs, x) = audio.read_wav('../../../sounds/sine-440-490.wav') w = np.hamming(3529) N = 32768 hN = N / 2 t = -20 pin = 4850 x1 = x[pin:pin + w.size] mX1, pX1 = dft.from_audio(x1, w, N) ploc = peaks.find_peaks(mX1, t) pmag = mX1[ploc] iploc, ipmag, ipphase = peaks.interpolate_peaks(mX1, pX1, ploc) plt.figure(1, figsize=(9, 6)) plt.subplot(311) plt.plot(fs * np.arange(pX1.size) / float(N), pX1, 'c', lw=1.5) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([200, 1000, -2, 8]) plt.title('pX + peaks (sine-440-490.wav)') (fs, x) = audio.read_wav('../../../sounds/vibraphone-C6.wav')