Example #1
0
    def update_training_derivatives(self, dyt_dxt, kx, name=None):
        """
        Update the training data (values) at the previously set input values.

        Parameters
        ----------
        dyt_dxt : np.ndarray[nt, ny] or np.ndarray[nt]
            The derivatives values for the nt training points.
        kx : int
            0-based index of the derivatives being set.
        name : str or None
            An optional label for the group of training points being set.
            This is only used in special situations (e.g., multi-fidelity applications).
        """
        check_support(self, "training_derivatives")

        dyt_dxt = check_2d_array(dyt_dxt, "dyt_dxt")

        if kx not in self.training_points[name]:
            raise ValueError(
                "The training points must be set first with set_training_values "
                + "before calling update_training_values.")

        xt = self.training_points[name][kx][0]
        if xt.shape[0] != dyt_dxt.shape[0]:
            raise ValueError(
                "The number of training points does not agree with the earlier call of "
                + "set_training_values.")

        self.training_points[name][kx + 1][1] = np.array(dyt_dxt)
Example #2
0
    def set_training_derivatives(self, xt, dyt_dxt, kx, name=None):
        """
        Set training data (derivatives).

        Parameters
        ----------
        xt : np.ndarray[nt, nx] or np.ndarray[nt]
            The input values for the nt training points.
        dyt_dxt : np.ndarray[nt, ny] or np.ndarray[nt]
            The derivatives values for the nt training points.
        kx : int
            0-based index of the derivatives being set.
        name : str or None
            An optional label for the group of training points being set.
            This is only used in special situations (e.g., multi-fidelity applications).
        """
        check_support(self, "training_derivatives")

        xt = check_2d_array(xt, "xt")
        dyt_dxt = check_2d_array(dyt_dxt, "dyt_dxt")

        if xt.shape[0] != dyt_dxt.shape[0]:
            raise ValueError(
                "the first dimension of xt and dyt_dxt must have the same length"
            )

        if not isinstance(kx, int):
            raise ValueError("kx must be an int")

        self.training_points[name][kx + 1] = [np.array(xt), np.array(dyt_dxt)]
Example #3
0
    def _predict_variance_derivatives(self, x):
        """
        Implemented by surrogate models to predict the derivation of the variance at a point (optional).

        Parameters:
        -----------
        x : np.ndarray
            Input value for the prediction point.

        Returns:
        --------
        derived_variance: np.ndarray
            The jacobian of the variance
        """
        check_support(self, "variance_derivatives", fail=True)
Example #4
0
    def predict_derivatives(self, x, kx):
        """
        Predict the dy_dx derivatives at a set of points.

        Parameters
        ----------
        x : np.ndarray[n, nx] or np.ndarray[n]
            Input values for the prediction points.
        kx : int
            The 0-based index of the input variable with respect to which derivatives are desired.

        Returns
        -------
        dy_dx : np.ndarray[n, ny]
            Derivatives.
        """
        check_support(self, 'derivatives')

        x = check_2d_array(x, 'x')
        check_nx(self.nx, x)

        n = x.shape[0]

        self.printer.active = self.options['print_global'] and self.options[
            'print_prediction']

        if self.name == 'MixExp':
            # Mixture of experts model
            self.printer._title('Evaluation of the Mixture of experts')
        else:
            self.printer._title('Evaluation')
        self.printer('   %-12s : %i' % ('# eval points.', n))
        self.printer()

        #Evaluate the unknown points using the specified model-method
        with self.printer._timed_context('Predicting', key='prediction'):
            y = self._predict_derivatives(x, kx)

        time_pt = self.printer._time('prediction')[-1] / n
        self.printer()
        self.printer('Prediction time/pt. (sec) : %10.7f' % time_pt)
        self.printer()

        return y.reshape((n, self.ny))
Example #5
0
    def predict_variances(self, x):
        """
        Predict the variances at a set of points.

        Parameters
        ----------
        x : np.ndarray[nt, nx] or np.ndarray[nt]
            Input values for the prediction points.

        Returns
        -------
        s2 : np.ndarray[nt, ny]
            Variances.
        """
        check_support(self, "variances")
        check_nx(self.nx, x)
        n = x.shape[0]
        s2 = self._predict_variances(x)
        return s2.reshape((n, self.ny))
Example #6
0
    def predict_derivatives(self, x: np.ndarray, kx: int) -> np.ndarray:
        """
        Predict the dy_dx derivatives at a set of points.

        Parameters
        ----------
        x : np.ndarray[nt, nx] or np.ndarray[nt]
            Input values for the prediction points.
        kx : int
            The 0-based index of the input variable with respect to which derivatives are desired.

        Returns
        -------
        dy_dx : np.ndarray[nt, ny]
            Derivatives.
        """
        check_support(self, "derivatives")
        x = ensure_2d_array(x, "x")
        check_nx(self.nx, x)
        n = x.shape[0]
        self.printer.active = (
            self.options["print_global"] and self.options["print_prediction"]
        )

        if self.name == "MixExp":
            # Mixture of experts model
            self.printer._title("Evaluation of the Mixture of experts")
        else:
            self.printer._title("Evaluation")
        self.printer("   %-12s : %i" % ("# eval points.", n))
        self.printer()

        # Evaluate the unknown points using the specified model-method
        with self.printer._timed_context("Predicting", key="prediction"):
            y = self._predict_derivatives(x, kx)

        time_pt = self.printer._time("prediction")[-1] / n
        self.printer()
        self.printer("Prediction time/pt. (sec) : %10.7f" % time_pt)
        self.printer()

        return y.reshape((n, self.ny))
Example #7
0
    def predict_output_derivatives(self, x):
        """
        Predict the derivatives dy_dyt at a set of points.

        Parameters
        ----------
        x : np.ndarray[nt, nx] or np.ndarray[nt]
            Input values for the prediction points.

        Returns
        -------
        dy_dyt : dict of np.ndarray[nt, nt]
            Dictionary of output derivatives.
            Key is None for derivatives wrt yt and kx for derivatives wrt dyt_dxt.
        """
        check_support(self, "output_derivatives")
        check_nx(self.nx, x)

        dy_dyt = self._predict_output_derivatives(x)
        return dy_dyt
Example #8
0
    def predict_variance_derivatives(self, x):
        """
        Predict the derivation of the variance at a point

        Parameters:
        -----------
        x : np.ndarray
            Input value for the prediction point.

        Returns:
        --------
        derived_variance: np.ndarray
            The jacobian of the variance
        """
        x = ensure_2d_array(x, "x")
        check_support(self, "variance_derivatives")
        check_nx(self.nx, x)
        n = x.shape[0]
        self.printer.active = (
            self.options["print_global"] and self.options["print_prediction"]
        )

        if self.name == "MixExp":
            # Mixture of experts model
            self.printer._title("Evaluation of the Mixture of experts")
        else:
            self.printer._title("Evaluation")
        self.printer("   %-12s : %i" % ("# eval points.", n))
        self.printer()

        # Evaluate the unknown points using the specified model-method
        with self.printer._timed_context("Predicting", key="prediction"):
            y = self._predict_variance_derivatives(x)

        time_pt = self.printer._time("prediction")[-1] / n
        self.printer()
        self.printer("Prediction time/pt. (sec) : %10.7f" % time_pt)
        self.printer()

        return y
Example #9
0
    def _predict_variances(self, x):
        """
        Implemented by surrogate models to predict the variances at a set of points (optional).

        If this method is implemented, the surrogate model should have

        ::
            self.supports['variances'] = True

        in the _initialize() implementation.

        Parameters
        ----------
        x : np.ndarray[nt, nx]
            Input values for the prediction points.

        Returns
        -------
        s2 : np.ndarray[nt, ny]
            Variances.
        """
        check_support(self, "variances", fail=True)
Example #10
0
    def _predict_output_derivatives(self, x):
        """
        Implemented by surrogate models to predict the dy_dyt derivatives (optional).

        If this method is implemented, the surrogate model should have

        ::
            self.supports['output_derivatives'] = True

        in the _initialize() implementation.

        Parameters
        ----------
        x : np.ndarray[nt, nx]
            Input values for the prediction points.

        Returns
        -------
        dy_dyt : dict of np.ndarray[nt, nt]
            Dictionary of output derivatives.
            Key is None for derivatives wrt yt and kx for derivatives wrt dyt_dxt.
        """
        check_support(self, "output_derivatives", fail=True)
Example #11
0
    def _predict_derivatives(self, x, kx):
        """
        Implemented by surrogate models to predict the dy_dx derivatives (optional).

        If this method is implemented, the surrogate model should have

        ::
            self.supports['derivatives'] = True

        in the _initialize() implementation.

        Parameters
        ----------
        x : np.ndarray[nt, nx]
            Input values for the prediction points.
        kx : int
            The 0-based index of the input variable with respect to which derivatives are desired.

        Returns
        -------
        dy_dx : np.ndarray[nt, ny]
            Derivatives.
        """
        check_support(self, "derivatives", fail=True)