def test_node_inputs(): env = make_test_env() g = Graph(env) df = Snap(snap_t1_source) node = g.create_node(key="node", snap=df) df = Snap(snap_t1_sink) node1 = g.create_node(key="node1", snap=df, input=node) pi = node1.get_interface() assert len(pi.inputs) == 1 assert pi.output == make_default_output() assert list(node1.declared_inputs.keys()) == ["input"]
def test_node_inputs(): env = make_test_env() g = Graph(env) df = datafunction(function_t1_source) node = g.create_node(key="node", function=df) df = datafunction(function_t1_sink) node1 = g.create_node(key="node1", function=df, input=node) pi = node1.get_interface() assert len(pi.inputs) == 1 assert pi.outputs == DEFAULT_OUTPUTS assert list(node1.declared_inputs.keys()) == ["input"]
def test_node_inputs(): env = make_test_env() g = Graph(env) df = pipe(pipe_t1_source) node = g.create_node(key="node", pipe=df) df = pipe(pipe_t1_sink) node1 = g.create_node(key="node1", pipe=df, upstream=node) pi = node1.get_interface() assert len(pi.inputs) == 1 assert pi.output == make_default_output_annotation() assert list(node1.declared_inputs.keys()) == ["input"]
def test_repeated_runs(): env = get_env() g = Graph(env) s = env._local_python_storage # Initial graph N = 2 * 4 g.create_node(key="source", pipe=customer_source, config={"total_records": N}) metrics = g.create_node(key="metrics", pipe=shape_metrics, upstream="source") # Run first time output = env.produce("metrics", g, target_storage=s) assert output.nominal_schema_key.endswith("Metric") records = output.as_records() expected_records = [ { "metric": "row_count", "value": 4 }, { "metric": "col_count", "value": 3 }, ] assert records == expected_records # Run again, should get next batch output = env.produce("metrics", g, target_storage=s) records = output.as_records() assert records == expected_records # Test latest_output output = env.latest_output(metrics) records = output.as_records() assert records == expected_records # Run again, should be exhausted output = env.produce("metrics", g, target_storage=s) assert output is None # Run again, should still be exhausted output = env.produce("metrics", g, target_storage=s) assert output is None # now add new node and process all at once g.create_node(key="new_accumulator", pipe="core.dataframe_accumulator", upstream="source") output = env.produce("new_accumulator", g, target_storage=s) records = output.as_records() assert len(records) == N output = env.produce("new_accumulator", g, target_storage=s) assert output is None
def test_worker_output(): env = make_test_env() env.add_module(core) g = Graph(env) # env.add_storage("python://test") with env.session_scope() as sess: rt = env.runtimes[0] # TODO: this is error because no data copy between SAME storage engines (but DIFFERENT storage urls) currently # ec = env.get_run_context(g, current_runtime=rt, target_storage=env.storages[0]) ec = env.get_run_context(g, current_runtime=rt, target_storage=rt.as_storage()) output_alias = "node_output" node = g.create_node(key="node", pipe=pipe_dl_source, output_alias=output_alias) w = Worker(ec) dfi_mgr = NodeInterfaceManager(ec, sess, node) bdfi = dfi_mgr.get_bound_interface() r = Executable( node.key, CompiledPipe(node.pipe.key, node.pipe), bdfi, ) run_result = w.execute(r) outputblock = run_result.output_block assert outputblock is not None outputblock = sess.merge(outputblock) block = outputblock.as_managed_data_block(ec, sess) assert block.as_records() == mock_dl_output assert block.nominal_schema is TestSchema4 assert len(block.realized_schema.fields) == len(TestSchema4.fields) # Test alias was created correctly assert ( sess.query(Alias).filter(Alias.alias == output_alias).first().data_block_id == block.data_block_id )
def test_declared_schema_translation(): ec = make_test_run_context() env = ec.env g = Graph(env) translation = {"f1": "mapped_f1"} n1 = g.create_node( key="node1", function=function_t1_to_t2, input="n0", schema_translation=translation, ) pi = n1.get_interface() # im = NodeInterfaceManager(ctx=ec, node=n1) block = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) # stream = block_as_stream(block, ec, pi.inputs[0].schema(env), translation) # bi = im.get_bound_stream_interface({"input": stream}) # assert len(bi.inputs) == 1 # input: StreamInput = bi.inputs[0] with env.md_api.begin(): schema_translation = get_schema_translation( env, block.realized_schema(env), target_schema=env.get_schema( pi.get_single_non_recursive_input().schema_like), declared_schema_translation=translation, ) assert schema_translation.as_dict() == translation
def test_exe_output(): env = make_test_env() env.add_module(core) g = Graph(env) # env.add_storage("python://test") # rt = env.runtimes[0] # TODO: this is error because no data copy between SAME storage engines (but DIFFERENT storage urls) currently # ec = env.get_run_context(g, current_runtime=rt, target_storage=env.storages[0]) # ec = env.get_run_context(g, current_runtime=rt, target_storage=rt.as_storage()) output_alias = "node_output" node = g.create_node(key="node", snap=snap_dl_source, output_alias=output_alias) exe = env.get_executable(node) result = ExecutionManager(exe).execute() with env.md_api.begin(): block = result.get_output_block(env) assert block is not None assert block.as_records() == mock_dl_output assert block.nominal_schema is TestSchema4 assert len(block.realized_schema.fields) == len(TestSchema4.fields) # Test alias was created correctly assert (env.md_api.execute( select(Alias).filter(Alias.alias == output_alias)). scalar_one_or_none().data_block_id == block.data_block_id) assert env.md_api.count(select(DataBlockLog)) == 1 dbl = env.md_api.execute(select(DataBlockLog)).scalar_one_or_none() assert dbl.data_block_id == block.data_block_id assert dbl.direction == Direction.OUTPUT
def test_natural_schema_translation(): # TODO ec = make_test_run_context() env = ec.env g = Graph(env) translation = {"f1": "mapped_f1"} n1 = g.create_node( key="node1", function=function_t1_to_t2, input="n0", schema_translation=translation, ) pi = n1.get_interface() # im = NodeInterfaceManager(ctx=ec, node=n1) block = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) with env.md_api.begin(): schema_translation = get_schema_translation( env, block.realized_schema(env), target_schema=env.get_schema( pi.get_single_non_recursive_input().schema_like), declared_schema_translation=translation, ) assert schema_translation.as_dict() == translation
def test_function_failure(): env = get_env() g = Graph(env) s = env._local_python_storage # Initial graph batches = 2 cfg = {"batches": batches, "fail": True} source = g.create_node(customer_source, params=cfg) blocks = produce(source, graph=g, target_storage=s, env=env) assert len(blocks) == 1 records = blocks[0].as_records() assert len(records) == 2 with env.md_api.begin(): assert env.md_api.count(select(DataFunctionLog)) == 1 assert env.md_api.count(select(DataBlockLog)) == 1 pl = env.md_api.execute(select(DataFunctionLog)).scalar_one_or_none() assert pl.node_key == source.key assert pl.graph_id == g.get_metadata_obj().hash assert pl.node_start_state == {} assert pl.node_end_state == {"records_imported": chunk_size} assert pl.function_key == source.function.key assert pl.function_params == cfg assert pl.error is not None assert FAIL_MSG in pl.error["error"] ns = env.md_api.execute( select(NodeState).filter(NodeState.node_key == pl.node_key) ).scalar_one_or_none() assert ns.state == {"records_imported": chunk_size} # Run again without failing, should see different result source.params["fail"] = False blocks = produce(source, graph=g, target_storage=s, env=env) assert len(blocks) == 1 records = blocks[0].as_records() assert len(records) == batch_size with env.md_api.begin(): assert env.md_api.count(select(DataFunctionLog)) == 2 assert env.md_api.count(select(DataBlockLog)) == 2 pl = ( env.md_api.execute( select(DataFunctionLog).order_by(DataFunctionLog.completed_at.desc()) ) .scalars() .first() ) assert pl.node_key == source.key assert pl.graph_id == g.get_metadata_obj().hash assert pl.node_start_state == {"records_imported": chunk_size} assert pl.node_end_state == {"records_imported": chunk_size + batch_size} assert pl.function_key == source.function.key assert pl.function_params == cfg assert pl.error is None ns = env.md_api.execute( select(NodeState).filter(NodeState.node_key == pl.node_key) ).scalar_one_or_none() assert ns.state == {"records_imported": chunk_size + batch_size}
def test_node_no_inputs(): env = make_test_env() g = Graph(env) df = datafunction(function_t1_source) node1 = g.create_node(key="node1", function=df) assert {node1: node1}[node1] is node1 # Test hash pi = node1.get_interface() assert pi.inputs == {} assert pi.outputs != {} assert node1.declared_inputs == {}
def test_non_terminating_snap(): def never_stop(input: Optional[DataBlock] = None) -> DataFrame: pass env = make_test_env() g = Graph(env) node = g.create_node(key="node", snap=never_stop) exe = env.get_executable(node) result = ExecutionManager(exe).execute() assert result.get_output_block(env) is None
def test_node_no_inputs(): env = make_test_env() g = Graph(env) df = pipe(pipe_t1_source) node1 = g.create_node(key="node1", pipe=df) assert {node1: node1}[node1] is node1 # Test hash pi = node1.get_interface() assert pi.inputs == [] assert pi.output is not None assert node1.declared_inputs == {}
def make_graph() -> Graph: env = make_test_env() env.add_module(core) g = Graph(env) g.create_node(key="node1", function=function_t1_source) g.node(key="node2", function=function_t1_source) g.node(key="node3", function=function_t1_to_t2, input="node1") g.node(key="node4", function=function_t1_to_t2, input="node2") g.node(key="node5", function=function_generic, input="node4") g.node(key="node6", function=function_self, input="node4") g.node( key="node7", function=function_multiple_input, inputs={ "input": "node4", "other_t2": "node3" }, ) return g
def test_alternate_apis(): env = get_env() g = Graph(env) s = env._local_python_storage # Initial graph batches = 2 source = g.create_node(customer_source, params={"batches": batches}) metrics = g.create_node(shape_metrics, input=source) # Run first time blocks = produce(metrics, graph=g, target_storage=s, env=env) assert len(blocks) == 1 output = blocks[0] assert output.nominal_schema_key.endswith("Metric") records = blocks[0].as_records() expected_records = [ {"metric": "row_count", "value": batch_size}, {"metric": "col_count", "value": 3}, ] assert records == expected_records
def test_non_terminating_function_with_reference_input(): def never_stop(input: Optional[Reference]) -> DataFrame: # Does not use input but doesn't matter cause reference pass env = make_test_env() g = Graph(env) source = g.create_node( function="core.import_dataframe", params={"dataframe": pd.DataFrame({"a": range(10)})}, ) node = g.create_node(key="node", function=never_stop, input=source) exe = env.get_executable(source) # TODO: reference inputs need to log too? (So they know when to update) # with env.md_api.begin(): # assert env.md_api.count(select(DataBlockLog)) == 1 result = ExecutionManager(exe).execute() exe = env.get_executable(node) result = ExecutionManager(exe).execute() assert result.get_output_block(env) is None
def test_node_params(): env = make_test_env() g = Graph(env) param_vals = [] def function_ctx(ctx: DataFunctionContext, test: str): param_vals.append(test) n = g.create_node(key="ctx", function=function_ctx, params={"test": 1}) env.run_node(n, g) assert param_vals == [1]
def test_repeated_runs(): env = get_env() g = Graph(env) s = env._local_python_storage # Initial graph batches = 2 N = batches * batch_size g.create_node(key="source", function=customer_source, params={"batches": batches}) metrics = g.create_node(key="metrics", function=shape_metrics, input="source") # Run first time blocks = env.produce("metrics", g, target_storage=s) assert blocks[0].nominal_schema_key.endswith("Metric") records = blocks[0].as_records() expected_records = [ {"metric": "row_count", "value": batch_size}, {"metric": "col_count", "value": 3}, ] assert records == expected_records # Run again, should get next batch blocks = env.produce("metrics", g, target_storage=s) records = blocks[0].as_records() assert records == expected_records # Test latest_output block = env.get_latest_output(metrics) records = block.as_records() assert records == expected_records # Run again, should be exhausted blocks = env.produce("metrics", g, target_storage=s) assert len(blocks) == 0 # Run again, should still be exhausted blocks = env.produce("metrics", g, target_storage=s) assert len(blocks) == 0 # now add new node and process all at once g.create_node(key="new_accumulator", function="core.accumulator", input="source") blocks = env.produce("new_accumulator", g, target_storage=s) assert len(blocks) == 1 records = blocks[0].as_records() assert len(records) == N blocks = env.produce("new_accumulator", g, target_storage=s) assert len(blocks) == 0
def test_node_config(): env = make_test_env() g = Graph(env) config_vals = [] def pipe_ctx(ctx: PipeContext): config_vals.append(ctx.get_config_value("test")) n = g.create_node(key="ctx", pipe=pipe_ctx, config={"test": 1, "extra_arg": 2}) with env.run(g) as exe: exe.execute(n) assert config_vals == [1]
def test_non_terminating_pipe(): def never_stop(input: Optional[DataBlock] = None) -> DataFrame: pass env = make_test_env() g = Graph(env) rt = env.runtimes[0] ec = env.get_run_context(g, current_runtime=rt) node = g.create_node(key="node", pipe=never_stop) em = ExecutionManager(ec) output = em.execute(node, to_exhaustion=True) assert output is None
def test_alternate_apis(): env = get_env() g = Graph(env) s = env._local_python_storage # Initial graph N = 2 * 4 source = g.create_node(customer_source, config={"total_records": N}) metrics = g.create_node(shape_metrics, upstream=source) # Run first time output = produce(metrics, graph=g, target_storage=s, env=env) assert output.nominal_schema_key.endswith("Metric") records = output.as_records() expected_records = [ { "metric": "row_count", "value": 4 }, { "metric": "col_count", "value": 3 }, ] assert records == expected_records
def test_exe(): env = make_test_env() g = Graph(env) node = g.create_node(key="node", snap=snap_t1_source) exe = env.get_executable(node) result = ExecutionManager(exe).execute() with env.md_api.begin(): assert not result.output_blocks assert env.md_api.count(select(SnapLog)) == 1 pl = env.md_api.execute(select(SnapLog)).scalar_one_or_none() assert pl.node_key == node.key assert pl.graph_id == g.get_metadata_obj().hash assert pl.node_start_state == {} assert pl.node_end_state == {} assert pl.snap_key == node.snap.key assert pl.snap_params == {}
def test_node_params(): env = make_test_env() g = Graph(env) param_vals = [] @Param("test", "str") def snap_ctx(ctx: SnapContext): param_vals.append(ctx.get_param("test")) n = g.create_node(key="ctx", snap=snap_ctx, params={ "test": 1, "extra_arg": 2 }) env.run_node(n, g) assert param_vals == [1]
def test_generic_schema_resolution(): ec = make_test_run_context() env = ec.env g = Graph(env) n1 = g.create_node(key="node1", pipe=pipe_generic, upstream="n0") # pi = n1.get_interface() with env.session_scope() as sess: im = NodeInterfaceManager(ctx=ec, sess=sess, node=n1) block = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema2", ) sess.add(block) sess.flush([block]) stream = block_as_stream(block, ec, sess) bi = im.get_bound_interface({"input": stream}) assert len(bi.inputs) == 1 assert bi.resolve_nominal_output_schema(env, sess) is TestSchema1
def test_worker(): env = make_test_env() g = Graph(env) rt = env.runtimes[0] ec = env.get_run_context(g, current_runtime=rt) with env.session_scope() as sess: node = g.create_node(key="node", pipe=pipe_t1_source) w = Worker(ec) dfi_mgr = NodeInterfaceManager(ec, sess, node) bdfi = dfi_mgr.get_bound_interface() r = Executable( node.key, CompiledPipe(node.pipe.key, node.pipe), bdfi, ) run_result = w.execute(r) output = run_result.output_block assert output is None
def test_generic_schema_resolution(): ec = make_test_run_context() env = ec.env g = Graph(env) n1 = g.create_node(key="node1", function=function_generic, input="n0") # pi = n1.get_interface() with env.md_api.begin(): exe = Executable(node=n1, function=n1.function, execution_context=ec) im = NodeInterfaceManager(exe) block = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema2", ) env.md_api.add(block) env.md_api.flush([block]) stream = block_as_stream(block, ec) bi = im.get_bound_interface({"input": stream}) assert len(bi.inputs) == 1 assert bi.resolve_nominal_output_schema(env) is TestSchema1
def test_natural_schema_translation(): # TODO ec = make_test_run_context() env = ec.env g = Graph(env) translation = {"f1": "mapped_f1"} n1 = g.create_node( key="node1", pipe=pipe_t1_to_t2, upstream="n0", schema_translation=translation ) pi = n1.get_interface() # im = NodeInterfaceManager(ctx=ec, node=n1) block = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) with env.session_scope() as sess: schema_translation = get_schema_translation( env, sess, block.realized_schema(env, sess), target_schema=pi.inputs[0].schema(env, sess), declared_schema_translation=translation, ) assert schema_translation.as_dict() == translation
class TestStreams: def setup(self): ctx = make_test_run_context() self.ctx = ctx self.env = ctx.env self.g = Graph(self.env) self.graph = self.g.get_metadata_obj() self.dr1t1 = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) self.dr2t1 = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) self.dr1t2 = DataBlockMetadata( nominal_schema_key="_test.TestSchema2", realized_schema_key="_test.TestSchema2", ) self.dr2t2 = DataBlockMetadata( nominal_schema_key="_test.TestSchema2", realized_schema_key="_test.TestSchema2", ) self.node_source = self.g.create_node(key="pipe_source", pipe=pipe_t1_source) self.node1 = self.g.create_node(key="pipe1", pipe=pipe_t1_sink, upstream="pipe_source") self.node2 = self.g.create_node(key="pipe2", pipe=pipe_t1_to_t2, upstream="pipe_source") self.node3 = self.g.create_node(key="pipe3", pipe=pipe_generic, upstream="pipe_source") self.sess = self.env._get_new_metadata_session() self.sess.add(self.dr1t1) self.sess.add(self.dr2t1) self.sess.add(self.dr1t2) self.sess.add(self.dr2t2) self.sess.add(self.graph) def teardown(self): self.sess.close() def test_stream_unprocessed_pristine(self): s = StreamBuilder(nodes=self.node_source) s = s.filter_unprocessed(self.node1) assert s.get_query(self.ctx, self.sess).first() is None def test_stream_unprocessed_eligible(self): dfl = PipeLog( graph_id=self.graph.hash, node_key=self.node_source.key, pipe_key=self.node_source.pipe.key, runtime_url="test", ) drl = DataBlockLog( pipe_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) self.sess.add_all([dfl, drl]) s = StreamBuilder(nodes=self.node_source) s = s.filter_unprocessed(self.node1) assert s.get_query(self.ctx, self.sess).first() == self.dr1t1 def test_stream_unprocessed_ineligible_already_input(self): dfl = PipeLog( graph_id=self.graph.hash, node_key=self.node_source.key, pipe_key=self.node_source.pipe.key, runtime_url="test", ) drl = DataBlockLog( pipe_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) dfl2 = PipeLog( graph_id=self.graph.hash, node_key=self.node1.key, pipe_key=self.node1.pipe.key, runtime_url="test", ) drl2 = DataBlockLog( pipe_log=dfl2, data_block=self.dr1t1, direction=Direction.INPUT, ) self.sess.add_all([dfl, drl, dfl2, drl2]) s = StreamBuilder(nodes=self.node_source) s = s.filter_unprocessed(self.node1) assert s.get_query(self.ctx, self.sess).first() is None def test_stream_unprocessed_ineligible_already_output(self): """ By default we don't input a block that has already been output by a DF, _even if that block was never input_, UNLESS input is a self reference (`this`). This is to prevent infinite loops. """ dfl = PipeLog( graph_id=self.graph.hash, node_key=self.node_source.key, pipe_key=self.node_source.pipe.key, runtime_url="test", ) drl = DataBlockLog( pipe_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) dfl2 = PipeLog( graph_id=self.graph.hash, node_key=self.node1.key, pipe_key=self.node1.pipe.key, runtime_url="test", ) drl2 = DataBlockLog( pipe_log=dfl2, data_block=self.dr1t1, direction=Direction.OUTPUT, ) self.sess.add_all([dfl, drl, dfl2, drl2]) s = StreamBuilder(nodes=self.node_source) s1 = s.filter_unprocessed(self.node1) assert s1.get_query(self.ctx, self.sess).first() is None # But ok with self reference s2 = s.filter_unprocessed(self.node1, allow_cycle=True) assert s2.get_query(self.ctx, self.sess).first() == self.dr1t1 def test_stream_unprocessed_eligible_schema(self): dfl = PipeLog( graph_id=self.graph.hash, node_key=self.node_source.key, pipe_key=self.node_source.pipe.key, runtime_url="test", ) drl = DataBlockLog( pipe_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) self.sess.add_all([dfl, drl]) s = StreamBuilder(nodes=self.node_source, schema="TestSchema1") s = s.filter_unprocessed(self.node1) assert s.get_query(self.ctx, self.sess).first() == self.dr1t1 s = StreamBuilder(nodes=self.node_source, schema="TestSchema2") s = s.filter_unprocessed(self.node1) assert s.get_query(self.ctx, self.sess).first() is None def test_operators(self): dfl = PipeLog( graph_id=self.graph.hash, node_key=self.node_source.key, pipe_key=self.node_source.pipe.key, runtime_url="test", ) drl = DataBlockLog( pipe_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) drl2 = DataBlockLog( pipe_log=dfl, data_block=self.dr2t1, direction=Direction.OUTPUT, ) self.sess.add_all([dfl, drl, drl2]) self._cnt = 0 @operator def count(stream: DataBlockStream) -> DataBlockStream: for db in stream: self._cnt += 1 yield db sb = StreamBuilder(nodes=self.node_source) expected_cnt = sb.get_query(self.ctx, self.sess).count() assert expected_cnt == 2 list(count(sb).as_managed_stream(self.ctx, self.sess)) assert self._cnt == expected_cnt # Test composed operators self._cnt = 0 list(count(latest(sb)).as_managed_stream(self.ctx, self.sess)) assert self._cnt == 1 # Test kwargs self._cnt = 0 list( count(filter(sb, function=lambda db: False)).as_managed_stream( self.ctx, self.sess)) assert self._cnt == 0
class TestStreams: def setup(self): ctx = make_test_run_context() self.ctx = ctx self.env = ctx.env self.sess = self.env.md_api.begin() self.sess.__enter__() self.g = Graph(self.env) self.graph = self.g.get_metadata_obj() self.dr1t1 = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) self.dr2t1 = DataBlockMetadata( nominal_schema_key="_test.TestSchema1", realized_schema_key="_test.TestSchema1", ) self.dr1t2 = DataBlockMetadata( nominal_schema_key="_test.TestSchema2", realized_schema_key="_test.TestSchema2", ) self.dr2t2 = DataBlockMetadata( nominal_schema_key="_test.TestSchema2", realized_schema_key="_test.TestSchema2", ) self.node_source = self.g.create_node(key="snap_source", snap=snap_t1_source) self.node1 = self.g.create_node(key="snap1", snap=snap_t1_sink, input="snap_source") self.node2 = self.g.create_node(key="snap2", snap=snap_t1_to_t2, input="snap_source") self.node3 = self.g.create_node(key="snap3", snap=snap_generic, input="snap_source") self.env.md_api.add(self.dr1t1) self.env.md_api.add(self.dr2t1) self.env.md_api.add(self.dr1t2) self.env.md_api.add(self.dr2t2) self.env.md_api.add(self.graph) def teardown(self): self.sess.__exit__(None, None, None) def test_stream_unprocessed_pristine(self): s = stream(nodes=self.node_source) s = s.filter_unprocessed(self.node1) assert s.get_query_result(self.env).scalar_one_or_none() is None def test_stream_unprocessed_eligible(self): dfl = SnapLog( graph_id=self.graph.hash, node_key=self.node_source.key, snap_key=self.node_source.snap.key, runtime_url="test", ) drl = DataBlockLog( snap_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) self.env.md_api.add_all([dfl, drl]) s = stream(nodes=self.node_source) s = s.filter_unprocessed(self.node1) assert s.get_query_result(self.env).scalar_one_or_none() == self.dr1t1 def test_stream_unprocessed_ineligible_already_input(self): dfl = SnapLog( graph_id=self.graph.hash, node_key=self.node_source.key, snap_key=self.node_source.snap.key, runtime_url="test", ) drl = DataBlockLog( snap_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) dfl2 = SnapLog( graph_id=self.graph.hash, node_key=self.node1.key, snap_key=self.node1.snap.key, runtime_url="test", ) drl2 = DataBlockLog( snap_log=dfl2, data_block=self.dr1t1, direction=Direction.INPUT, ) self.env.md_api.add_all([dfl, drl, dfl2, drl2]) s = stream(nodes=self.node_source) s = s.filter_unprocessed(self.node1) assert s.get_query_result(self.env).scalar_one_or_none() is None def test_stream_unprocessed_ineligible_already_output(self): """ By default we don't input a block that has already been output by a DF, _even if that block was never input_, UNLESS input is a self reference (`this`). This is to prevent infinite loops. """ dfl = SnapLog( graph_id=self.graph.hash, node_key=self.node_source.key, snap_key=self.node_source.snap.key, runtime_url="test", ) drl = DataBlockLog( snap_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) dfl2 = SnapLog( graph_id=self.graph.hash, node_key=self.node1.key, snap_key=self.node1.snap.key, runtime_url="test", ) drl2 = DataBlockLog( snap_log=dfl2, data_block=self.dr1t1, direction=Direction.OUTPUT, ) self.env.md_api.add_all([dfl, drl, dfl2, drl2]) s = stream(nodes=self.node_source) s1 = s.filter_unprocessed(self.node1) assert s1.get_query_result(self.env).scalar_one_or_none() is None # But ok with self reference s2 = s.filter_unprocessed(self.node1, allow_cycle=True) assert s2.get_query_result(self.env).scalar_one_or_none() == self.dr1t1 def test_stream_unprocessed_eligible_schema(self): dfl = SnapLog( graph_id=self.graph.hash, node_key=self.node_source.key, snap_key=self.node_source.snap.key, runtime_url="test", ) drl = DataBlockLog( snap_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) self.env.md_api.add_all([dfl, drl]) s = stream(nodes=self.node_source, schema="TestSchema1") s = s.filter_unprocessed(self.node1) assert s.get_query_result(self.env).scalar_one_or_none() == self.dr1t1 s = stream(nodes=self.node_source, schema="TestSchema2") s = s.filter_unprocessed(self.node1) assert s.get_query_result(self.env).scalar_one_or_none() is None def test_operators(self): dfl = SnapLog( graph_id=self.graph.hash, node_key=self.node_source.key, snap_key=self.node_source.snap.key, runtime_url="test", ) drl = DataBlockLog( snap_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) drl2 = DataBlockLog( snap_log=dfl, data_block=self.dr2t1, direction=Direction.OUTPUT, ) self.env.md_api.add_all([dfl, drl, drl2]) self._cnt = 0 @operator def count(stream: DataBlockStream) -> DataBlockStream: for db in stream: self._cnt += 1 yield db sb = stream(nodes=self.node_source) expected_cnt = sb.get_count(self.env) assert expected_cnt == 2 list(count(sb).as_managed_stream(self.ctx)) assert self._cnt == expected_cnt # Test composed operators self._cnt = 0 list(count(latest(sb)).as_managed_stream(self.ctx)) assert self._cnt == 1 # Test kwargs self._cnt = 0 list( count(filter(sb, function=lambda db: False)).as_managed_stream( self.ctx)) assert self._cnt == 0 def test_managed_stream(self): dfl = SnapLog( graph_id=self.graph.hash, node_key=self.node_source.key, snap_key=self.node_source.snap.key, runtime_url="test", ) drl = DataBlockLog( snap_log=dfl, data_block=self.dr1t1, direction=Direction.OUTPUT, ) dfl2 = SnapLog( graph_id=self.graph.hash, node_key=self.node1.key, snap_key=self.node1.snap.key, runtime_url="test", ) drl2 = DataBlockLog( snap_log=dfl2, data_block=self.dr1t1, direction=Direction.INPUT, ) self.env.md_api.add_all([dfl, drl, dfl2, drl2]) s = stream(nodes=self.node_source) s = s.filter_unprocessed(self.node1) ctx = make_test_run_context() with ctx.env.md_api.begin(): dbs = ManagedDataBlockStream(ctx, stream_builder=s) with pytest.raises(StopIteration): assert next(dbs) is None