def test_empty_result_count_typed_notau_prepost(self): schema_all = copy.deepcopy(schema) schema_all['PUMS.PUMS'].censor_dims = False reader = PandasReader(df, schema) query = QueryParser(schema).queries( "SELECT COUNT(*) as c FROM PUMS.PUMS WHERE age > 100")[0] private_reader = PrivateReader(reader, schema_all, privacy=Privacy(epsilon=1.0)) private_reader._execute_ast(query, True) for i in range(3): print(private_reader._options) trs = private_reader._execute_ast(query, True) print("empty query") print(trs) assert (len(trs) == 2)
def test_check_thresholds_gauss(self): # check tau for various privacy parameters epsilons = [0.1, 2.0] max_contribs = [1, 3] deltas = [10E-5, 10E-15] query = "SELECT COUNT(*) FROM PUMS.PUMS GROUP BY married" reader = PandasReader(df, schema) qp = QueryParser(schema) q = qp.query(query) for eps in epsilons: for d in max_contribs: for delta in deltas: privacy = Privacy(epsilon=eps, delta=delta) privacy.mechanisms.map[Stat.threshold] = Mechanism.gaussian # using slightly different formulations of same formula from different papers # make sure private_reader round-trips gaus_scale = math.sqrt(d) * math.sqrt( 2 * math.log(1.25 / delta)) / eps gaus_rho = 1 + gaus_scale * math.sqrt( 2 * math.log(d / math.sqrt(2 * math.pi * delta))) schema_c = copy.copy(schema) schema_c["PUMS.PUMS"].max_ids = d private_reader = PrivateReader(reader, metadata=schema_c, privacy=privacy) assert (private_reader._options.max_contrib == d) r = private_reader._execute_ast(q) assert (math.isclose(private_reader.tau, gaus_rho, rel_tol=0.03, abs_tol=2))
def run_agg_query(self, df, metadata, query, confidence, get_exact=True): """ Run the query using the private reader and input query Get query response back """ reader = PandasReader(df, metadata) actual = 0.0 # VAR not supported in Pandas Reader. So not needed to fetch actual on every aggregation if get_exact: actual = reader.execute(query)[1:][0][0] private_reader = PrivateReader(reader, metadata, privacy=Privacy(epsilon=self.epsilon)) query_ast = private_reader.parse_query_string(query) noisy_values = [] low_bounds = [] high_bounds = [] for idx in range(self.repeat_count): res = private_reader._execute_ast(query_ast, True) # Disabled because confidence interval not available in report # interval = res.report[res.colnames[0]].intervals[confidence] # low_bounds.append(interval[0].low) # high_bounds.append(interval[0].high) noisy_values.append(res[1:][0][0]) return np.array(noisy_values), actual, low_bounds, high_bounds
def release(self, dataset: object) -> Report: """ Dataset is a collection of [Dataset Metadata, PandasReader] Releases response to SQL query based on the number of repetitions requested by eval_params if actual is set of False. """ private_reader = PrivateReader(dataset[0], dataset[1], self.privacy_params.epsilon) query_ast = private_reader.parse_query_string(self.algorithm) srs_orig = private_reader.reader._execute_ast_df(query_ast) noisy_values = [] for idx in range(self.eval_params.repeat_count): res = private_reader._execute_ast(query_ast, True) if not res[1:]: return Report({"__key__": "noisy_values_empty"}) else: noisy_values.append(res[1:][0][0]) return Report({"__key__": noisy_values})
def run_agg_query_df(self, df, metadata, query, confidence, file_name="d1"): """ Run the query using the private reader and input query Get query response back for multiple dimensions and aggregations """ # Getting exact result reader = PandasReader(df, metadata) exact_res = reader.execute(query)[1:] private_reader = PrivateReader(reader, metadata, privacy=Privacy(epsilon=self.epsilon)) query_ast = private_reader.parse_query_string(query) # Distinguishing dimension and measure columns sample_res = private_reader._execute_ast(query_ast, True) headers = sample_res[0] dim_cols = [] num_cols = [] out_syms = query_ast.all_symbols() out_types = [s[1].type() for s in out_syms] out_col_names = [s[0] for s in out_syms] for col, ctype in zip(out_col_names, out_types): if ctype == "string": dim_cols.append(col) else: num_cols.append(col) # Repeated query and store results res = [] for idx in range(self.repeat_count): dim_rows = [] num_rows = [] singleres = private_reader._execute_ast_df(query_ast, cache_exact=True) # values = singleres[col] for col in dim_cols: dim_rows.append(singleres[col].tolist()) for col in num_cols: values = singleres[col].tolist() num_rows.append(list(zip(values))) res.extend(list(zip(*dim_rows, *num_rows))) exact_df = pd.DataFrame(exact_res, columns=headers) noisy_df = pd.DataFrame(res, columns=headers) # Add a dummy dimension column for cases where no dimensions available for merging D1 and D2 if len(dim_cols) == 0: dim_cols.append("__dim__") if dim_cols[0] == "__dim__": exact_df[dim_cols[0]] = ["key"] * len(exact_df) noisy_df[dim_cols[0]] = ["key"] * len(noisy_df) return noisy_df, exact_df, dim_cols, num_cols