Example #1
0
def testInvertedSoftmaxModels():

    b = GM()
    b.addG(Gaussian([2, 2], [[1, 0], [0, 1]], 1))
    b.addG(Gaussian([4, 2], [[1, 0], [0, 1]], 1))
    b.addG(Gaussian([2, 4], [[1, 0], [0, 1]], 1))
    b.addG(Gaussian([3, 3], [[1, 0], [0, 1]], 1))
    b.normalizeWeights()

    b.plot2D()

    pz = Softmax()
    pz.buildOrientedRecModel([2, 2], 0, 1, 1, 5)
    #pz.plot2D();

    startTime = time.clock()
    b2 = GM()
    for i in range(1, 5):
        b2.addGM(pz.runVBND(b, i))
    print(time.clock() - startTime)
    b2.plot2D()

    startTime = time.clock()
    b3 = GM()
    b3.addGM(b)
    tmpB = pz.runVBND(b, 0)
    tmpB.normalizeWeights()
    tmpB.scalerMultiply(-1)

    b3.addGM(tmpB)

    tmpBWeights = b3.getWeights()
    mi = min(b3.getWeights())
    #print(mi);
    for g in b3.Gs:
        g.weight = g.weight - mi

    b3.normalizeWeights()
    print(time.clock() - startTime)
    #b3.display();
    b3.plot2D()
Example #2
0
	def stateObsUpdate(self,name,relation,pos="Is"):
		if(name == 'You'):
			#Take Cops Position, builid box around it
			cp=self.copPose; 
			points = [[cp[0]-5,cp[1]-5],[cp[0]+5,cp[1]-5],[cp[0]+5,cp[1]+5],[cp[0]-5,cp[1]+5]]; 
			soft = Softmax()
			soft.buildPointsModel(points,steepness=3); 
		else:
			soft = self.sketches[name]; 
		softClass = self.spatialRealtions[relation]; 

		if(pos=="Is"):
			self.belief = soft.runVBND(self.belief,softClass); 
			self.belief.normalizeWeights(); 
		else:
			tmp = GM();
			for i in range(0,5):
				if(i!=softClass):
					tmp.addGM(soft.runVBND(self.belief,i));
			tmp.normalizeWeights(); 
			self.belief=tmp; 
		if(self.belief.size > self.MAX_BELIEF_SIZE):
			self.belief.condense(self.MAX_BELIEF_SIZE); 
			self.belief.normalizeWeights()
Example #3
0
    #Get N Vertices of the shape
    cHull = ConvexHull(pairedPoints)
    vertices = fitSimplePolyToHull(cHull, pairedPoints, N=5)
    #vertices = fitBestPolyToHull(cHull,pairedPoints);

    #Show Vertices
    plt.scatter([vertices[i][0] for i in range(0, len(vertices))],
                [vertices[i][1] for i in range(0, len(vertices))])
    plt.show()

    #Make softmax model
    pz = Softmax()
    pz.buildPointsModel(vertices, steepness=5)

    #Update belief
    post = pz.runVBND(prior, 4)

    #display
    fig, axarr = plt.subplots(3)
    [xprior, yprior, cprior] = prior.plot2D(low=[0, 0],
                                            high=[10, 10],
                                            vis=False)
    [xobs, yobs, cobs] = pz.plot2D(low=[0, 0],
                                   high=[10, 10],
                                   delta=0.1,
                                   vis=False)
    [xpost, ypost, cpost] = post.plot2D(low=[0, 0], high=[10, 10], vis=False)
    axarr[0].contourf(xprior, yprior, cprior, cmap='viridis')
    axarr[1].contourf(xobs, yobs, cobs, cmap='inferno')
    axarr[2].contourf(xpost, ypost, cpost, cmap='viridis')
    plt.show()
Example #4
0
    def oldbeliefUpdate(self, belief, responses=None, copPoses=None):
        print('UPDATING BELIEF')
        #1. partition means into separate GMs, 1 for each room
        allBels = []
        allBounds = []
        copBounds = []
        weightSums = []
        for room in self.map_.rooms:
            tmp = GM()
            tmpw = 0

            allBounds.append([
                self.map_.rooms[room]['min_x'], self.map_.rooms[room]['min_y'],
                self.map_.rooms[room]['max_x'], self.map_.rooms[room]['max_y']
            ])
            for g in belief:
                m = [g.mean[2], g.mean[3]]
                # if mean is inside the room
                if (m[0] < self.map_.rooms[room]['max_x']
                        and m[0] > self.map_.rooms[room]['min_x']
                        and m[1] < self.map_.rooms[room]['max_y']
                        and m[1] > self.map_.rooms[room]['min_y']):
                    tmp.addG(deepcopy(g))
                    tmpw += g.weight

            tmp.normalizeWeights()
            allBels.append(tmp)

            weightSums.append(tmpw)

        pose = copPoses[-1]
        roomCount = 0
        copBounds = 0
        for room in self.map_.rooms:
            if (pose[0] < self.map_.rooms[room]['max_x']
                    and pose[0] > self.map_.rooms[room]['min_x']
                    and pose[1] < self.map_.rooms[room]['max_y']
                    and pose[1] > self.map_.rooms[room]['min_y']):
                copBounds = self.rooms_map_inv[room]
            roomCount += 1

        viewCone = Softmax()
        viewCone.buildTriView(pose, length=1, steepness=10)
        for i in range(0, len(viewCone.weights)):
            viewCone.weights[i] = [
                0, 0, viewCone.weights[i][0], viewCone.weights[i][1]
            ]

        #Only update room that cop is in with view cone update
        #Make sure to renormalize that room
        # newerBelief = GM();
        # for i in range(1,5):
        # 	tmpBel = viewCone.runVBND(allBels[copBounds],i);
        # 	newerBelief.addGM(tmpBel);
        # allBels[copBounds] = newerBelief;

        #Update all rooms
        for i in range(0, len(allBels)):
            newerBelief = GM()
            for j in range(1, 5):
                tmpBel = viewCone.runVBND(allBels[i], j)
                if (j == 1):
                    tmpBel.scalerMultiply(.8)
                newerBelief.addGM(tmpBel)

            allBels[i] = newerBelief

        for i in range(0, len(allBels)):
            allBels[i].normalizeWeights()
        #allBels[copBounds].normalizeWeights();

        print('allBels LENGTH: {}'.format(len(allBels)))

        #2. use queued observations to update appropriate rooms GM
        if (responses is not None):
            for res in responses:
                roomNum = res[0]
                mod = res[1]
                clas = res[2]
                sign = res[3]

                if (roomNum == 0):
                    #apply to all
                    for i in range(0, len(allBels)):
                        if (sign == True):
                            allBels[i] = mod.runVBND(allBels[i], 0)
                        else:
                            tmp = GM()
                            for j in range(1, mod.size):
                                tmp.addGM(mod.runVBND(allBels[i], j))
                            allBels[i] = tmp

                # else:
                # 	print('ROOM NUM: {}'.format(roomNum))
                # 	#apply to roomNum-1;
                # 	if(sign == True):
                # 		allBels[roomNum-1] = mod.runVBND(allBels[roomNum-1],clas);
                # 	else:
                # 		tmp = GM();
                # 		for i in range(1,mod.size):
                # 			if(i!=clas):
                # 				tmp.addGM(mod.runVBND(allBels[roomNum-1],i));
                # 		allBels[roomNum-1] = tmp;
                else:
                    print('ROOM NUM: {}'.format(roomNum))
                    #apply to all rooms
                    for i in range(0, len(allBels)):
                        if (sign == True):
                            allBels[i] = mod.runVBND(allBels[i], clas)
                        else:
                            tmp = GM()
                            for j in range(1, mod.size):
                                if (j != clas):
                                    tmp.addGM(mod.runVBND(allBels[i], j))
                            allBels[i] = tmp

        #2.5. Make sure all GMs stay within their rooms bounds:
        #Also condense each mixture
        for gm in allBels:
            for g in gm:
                g.mean[2] = max(g.mean[2],
                                allBounds[allBels.index(gm)][0] - 0.01)
                g.mean[2] = min(g.mean[2],
                                allBounds[allBels.index(gm)][2] + 0.01)
                g.mean[3] = max(g.mean[3],
                                allBounds[allBels.index(gm)][1] - 0.01)
                g.mean[3] = min(g.mean[3],
                                allBounds[allBels.index(gm)][3] + 0.01)

        for i in range(0, len(allBels)):
            allBels[i].condense(15)
#			allBels[i] = allBels[i].kmeansCondensationN(6)

#3. recombine beliefs
        newBelief = GM()
        for g in allBels:
            g.scalerMultiply(weightSums[allBels.index(g)])
            newBelief.addGM(g)
        newBelief.normalizeWeights()

        #4. fix cops position in belief
        for g in newBelief:
            g.mean = [copPoses[0][0], copPoses[0][1], g.mean[2], g.mean[3]]
            g.var[0][0] = 0.1
            g.var[0][1] = 0
            g.var[1][0] = 0
            g.var[1][1] = 0.1

        #5. add uncertainty for robber position
        for g in newBelief:
            g.var[2][2] += 0
            g.var[3][3] += 0

        # newBelief.normalizeWeights();

        if copPoses is not None:
            pose = copPoses[len(copPoses) - 1]
            print("MAP COP POSE TO PLOT: {}".format(pose))
            self.makeBeliefMap(newBelief, pose)

        return newBelief
Example #5
0
def buildRadialSoftmaxModels():
    dims = 2

    #Target Model
    steep = 2
    weight = (np.array([-2, -1, 0]) * steep).tolist()
    bias = (np.array([6, 4, 0]) * steep).tolist()

    for i in range(0, len(weight)):
        weight[i] = [weight[i], 0]
    pz = Softmax(weight, bias)
    obsOffset = [-7, -4]
    observation = 2

    #pz.plot2D(low=[0,0],high=[1,6.28]);
    '''
	H = np.matrix([[2,math.pi*2,1],[2,math.pi*3/4,1],[2,math.pi/2,1]]); 
	print(nullspace(H)); 


	#Modified Target Model
	#def buildGeneralModel(self,dims,numClasses,boundries,B,steepness=1):
	B = np.matrix([0.447,0,-0.8944,0.447,0,-0.894]).T;
	boundries = [[1,0],[2,0]]; 
	pz = Softmax(); 
	pz.buildGeneralModel(2,3,boundries,B,steepness=2); 
	'''
    '''
	cent = [0,0]; 
	length = 3; 
	width = 2; 
	orient = 0; 

	pz = Softmax(); 
	pz.buildOrientedRecModel(cent,orient,length,width,steepness=5); 
	'''

    print('Plotting Observation Model')
    [xobs, yobs, domObs] = plot2DPolar(pz,
                                       low=[-10, -10],
                                       high=[10, 10],
                                       delta=0.1,
                                       offset=obsOffset,
                                       vis=False)
    [xobsPol, yobsPol, domObsPol] = pz.plot2D(low=[0, -3.14],
                                              high=[10, 3.14],
                                              delta=0.1,
                                              vis=False)

    # fig = plt.figure()
    # ax = fig.gca(projection='3d');
    # colors = ['b','g','r','c','m','y','k','w','b','g'];
    # for i in range(0,len(model)):
    # 	ax.plot_surface(x,y,model[i],color = colors[i]);

    # plt.show();

    #pz.plot2D(low=[-10,-10],high=[10,10]);

    scaling = o1
    bcart = GM()
    for i in range(-10, 11):
        for j in range(-10, 11):
            # if(i != 0 or j != 0):
            bcart.addG(Gaussian([i, j], [[scaling, 0], [0, scaling]], 1))

    bcart.normalizeWeights()
    [xpri, ypri, cpri] = bcart.plot2D(low=[-10, -10], high=[10, 10], vis=False)
    bpol = transformCartToPol(bcart, obsOffset)

    for i in range(0, 3):
        bpolPrime = pz.runVBND(bpol, i)
        bcartPrime = transformPolToCart(bpolPrime, obsOffset)
        bcartPrime.normalizeWeights()
        [xpos, ypos, cpos] = bcartPrime.plot2D(low=[-10, -10],
                                               high=[10, 10],
                                               vis=False)

        fig, axarr = plt.subplots(3)
        axarr[0].contourf(xpri, ypri, cpri)
        axarr[0].set_ylabel("Prior")
        axarr[1].contourf(xobs, yobs, domObs)
        axarr[1].set_ylabel("Observation: " + str(i))
        axarr[2].contourf(xpos, ypos, cpos)
        axarr[2].set_ylabel("Posterior")

        plt.show()

    fig, axarr = plt.subplots(1, 2)
    axarr[0].contourf(xobs, yobs, domObs)
    axarr[1].contourf(xobsPol, yobsPol, domObsPol)
    axarr[0].set_title("Cartesian Observations")
    axarr[1].set_title("Polar Observations")
    axarr[0].set_xlabel("X")
    axarr[0].set_ylabel("Y")
    axarr[1].set_xlabel("Radius (r)")
    axarr[1].set_ylabel("Angle (theta)")
    plt.show()

    bTestCart = GM()
    bTestCart.addG(Gaussian([1, 2], [[1, 0], [0, 1]], .25))
    bTestCart.addG(Gaussian([-3, 1], [[3, 0], [0, 1]], .25))
    bTestCart.addG(Gaussian([1, -4], [[1, 0], [0, 2]], .25))
    bTestCart.addG(Gaussian([-3, -3], [[2, 1.2], [1.2, 2]], .25))
    bTestPol = transformCartToPol(bTestCart, [0, 0])

    [xTestCart, yTestCart, cTestCart] = bTestCart.plot2D(low=[-10, -10],
                                                         high=[10, 10],
                                                         vis=False)
    [xTestPol, yTestPol, cTestPol] = bTestPol.plot2D(low=[0, -3.14],
                                                     high=[10, 3.14],
                                                     vis=False)

    fig, axarr = plt.subplots(1, 2)
    axarr[0].contourf(xTestCart, yTestCart, cTestCart)
    axarr[1].contourf(xTestPol, yTestPol, cTestPol)
    axarr[0].set_title("Cartesian Gaussians")
    axarr[1].set_title("Polar Gaussians")
    axarr[0].set_xlabel("X")
    axarr[0].set_ylabel("Y")
    axarr[1].set_xlabel("Radius (r)")
    axarr[1].set_ylabel("Angle (theta)")
    plt.show()
    '''
Example #6
0
def buildRectangleModel():

    #Specify the lower left and upper right points
    recBounds = [[2, 2], [3, 4]]
    #recBounds = [[1,1],[8,4]];

    B = np.matrix([
        -1, 0, recBounds[0][0], 1, 0, -recBounds[1][0], 0, 1, -recBounds[1][1],
        0, -1, recBounds[0][1]
    ]).T

    M = np.zeros(shape=(12, 15))

    #Boundry: Left|Near
    rowSB = 0
    classNum1 = 1
    classNum2 = 0
    for i in range(0, 3):
        M[3 * rowSB + i, 3 * classNum2 + i] = -1
        M[3 * rowSB + i, 3 * classNum1 + i] = 1

    #Boundry: Right|Near
    rowSB = 1
    classNum1 = 2
    classNum2 = 0
    for i in range(0, 3):
        M[3 * rowSB + i, 3 * classNum2 + i] = -1
        M[3 * rowSB + i, 3 * classNum1 + i] = 1

    #Boundry: Up|Near
    rowSB = 2
    classNum1 = 3
    classNum2 = 0
    for i in range(0, 3):
        M[3 * rowSB + i, 3 * classNum2 + i] = -1
        M[3 * rowSB + i, 3 * classNum1 + i] = 1

    #Boundry: Down|Near
    rowSB = 3
    classNum1 = 4
    classNum2 = 0
    for i in range(0, 3):
        M[3 * rowSB + i, 3 * classNum2 + i] = -1
        M[3 * rowSB + i, 3 * classNum1 + i] = 1

    A = np.hstack((M, B))
    #print(np.linalg.matrix_rank(A))
    #print(np.linalg.matrix_rank(M))

    Theta = linalg.lstsq(M, B)[0].tolist()

    weight = []
    bias = []
    for i in range(0, len(Theta) // 3):
        weight.append([Theta[3 * i][0], Theta[3 * i + 1][0]])
        bias.append(Theta[3 * i + 2][0])

    steep = 1
    weight = (np.array(weight) * steep).tolist()
    bias = (np.array(bias) * steep).tolist()
    pz = Softmax(weight, bias)
    #print('Plotting Observation Model');
    #pz.plot2D(low=[0,0],high=[10,5],vis=True);

    prior = GM()
    for i in range(0, 10):
        for j in range(0, 5):
            prior.addG(Gaussian([i, j], [[1, 0], [0, 1]], 1))
    # prior.addG(Gaussian([4,3],[[1,0],[0,1]],1));
    # prior.addG(Gaussian([7,2],[[4,1],[1,4]],3))

    prior.normalizeWeights()

    dela = 0.1
    x, y = np.mgrid[0:10:dela, 0:5:dela]
    fig, axarr = plt.subplots(6)
    axarr[0].contourf(x, y,
                      prior.discretize2D(low=[0, 0], high=[10, 5], delta=dela))
    axarr[0].set_title('Prior')
    titles = ['Inside', 'Left', 'Right', 'Up', 'Down']
    for i in range(0, 5):
        post = pz.runVBND(prior, i)
        c = post.discretize2D(low=[0, 0], high=[10, 5], delta=dela)
        axarr[i + 1].contourf(x, y, c, cmap='viridis')
        axarr[i + 1].set_title('Post: ' + titles[i])

    plt.show()