Example #1
0
def get_landmark_transform(config):
    return transforms.Compose([
        # WrapImageLandmarksSOLT(),
        slc.Stream([
            slt.RandomFlip(p=0.5, axis=1),
            slt.RandomScale(range_x=(0.8, 1.2), p=1),
            slt.RandomRotate(rotation_range=(-180, 180), p=0.2),
            slt.RandomProjection(affine_transforms=slc.Stream([
                slt.RandomScale(range_x=(0.8, 1.3), p=1),
                slt.RandomRotate(rotation_range=(-180, 180), p=1),
                slt.RandomShear(range_x=(-0.1, 0.1), range_y=(0, 0), p=0.5),
                slt.RandomShear(range_y=(-0.1, 0.1), range_x=(0, 0), p=0.5),
            ]), v_range=(1e-5, 2e-3), p=0.8),
            slt.PadTransform(int(config.dataset.crop_size * 1.4), padding='z'),
            slt.CropTransform(config.dataset.crop_size, crop_mode='r'),
            slc.SelectiveStream([
                slt.ImageSaltAndPepper(p=1, gain_range=0.01),
                slt.ImageBlur(p=1, blur_type='g', k_size=(3, 5)),
                slt.ImageBlur(p=1, blur_type='m', k_size=(3, 5)),
                slt.ImageAdditiveGaussianNoise(p=1, gain_range=0.5),
                slc.Stream([
                    slt.ImageSaltAndPepper(p=1, gain_range=0.05),
                    slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
                ]),
                slc.Stream([
                    slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
                    slt.ImageSaltAndPepper(p=1, gain_range=0.01),
                ]),
                slc.Stream()
            ]),
            slt.ImageGammaCorrection(p=1, gamma_range=(0.5, 1.5))
        ]),
        SOLTtoHourGlassGSinput(downsample=4, sigma=3),
        ApplyTransformByIndex(transform=dwutils.npg2tens, ids=[0, 1]),
    ])
Example #2
0
def get_landmark_transform_kneel(config):
    cutout = slt.ImageCutOut(
        cutout_size=(int(config.dataset.cutout *
                         config.dataset.augs.crop.crop_x),
                     int(config.dataset.cutout *
                         config.dataset.augs.crop.crop_y)),
        p=0.5)
    ppl = transforms.Compose([
        slc.Stream(),
        slc.SelectiveStream(
            [
                slc.Stream([
                    slt.RandomFlip(p=0.5, axis=1),
                    slt.RandomProjection(affine_transforms=slc.Stream([
                        slt.RandomScale(range_x=(0.9, 1.1), p=1),
                        slt.RandomRotate(rotation_range=(-90, 90), p=1),
                        slt.RandomShear(
                            range_x=(-0.1, 0.1), range_y=(-0.1, 0.1), p=0.5),
                        slt.RandomShear(
                            range_x=(-0.1, 0.1), range_y=(-0.1, 0.1), p=0.5),
                    ]),
                                         v_range=(1e-5, 2e-3),
                                         p=0.5),
                    # slt.RandomScale(range_x=(0.5, 2.5), p=0.5),
                ]),
                slc.Stream()
            ],
            probs=[0.7, 0.3]),
        slc.Stream([
            slt.PadTransform(
                (config.dataset.augs.pad.pad_x, config.dataset.augs.pad.pad_y),
                padding='z'),
            slt.CropTransform((config.dataset.augs.crop.crop_x,
                               config.dataset.augs.crop.crop_y),
                              crop_mode='r'),
        ]),
        slc.SelectiveStream([
            slt.ImageSaltAndPepper(p=1, gain_range=0.01),
            slt.ImageBlur(p=1, blur_type='g', k_size=(3, 5)),
            slt.ImageBlur(p=1, blur_type='m', k_size=(3, 5)),
            slt.ImageAdditiveGaussianNoise(p=1, gain_range=0.5),
            slc.Stream([
                slt.ImageSaltAndPepper(p=1, gain_range=0.05),
                slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
            ]),
            slc.Stream([
                slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
                slt.ImageSaltAndPepper(p=1, gain_range=0.01),
            ]),
            slc.Stream()
        ],
                            n=1),
        slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)),
        cutout if config.dataset.use_cutout else slc.Stream(),
        DataToFunction(solt_to_img_target),
        ApplyByIndex(transforms.ToTensor(), 0)
    ])
    return ppl
Example #3
0
def init_augs():
    kvs = GlobalKVS()
    args = kvs['args']
    cutout = slt.ImageCutOut(cutout_size=(int(args.cutout * args.crop_x),
                                          int(args.cutout * args.crop_y)),
                             p=0.5)
    # plus-minus 1.3 pixels
    jitter = slt.KeypointsJitter(dx_range=(-0.003, 0.003),
                                 dy_range=(-0.003, 0.003))
    ppl = tvt.Compose([
        jitter if args.use_target_jitter else slc.Stream(),
        slc.SelectiveStream([
            slc.Stream([
                slt.RandomFlip(p=0.5, axis=1),
                slt.RandomProjection(affine_transforms=slc.Stream([
                    slt.RandomScale(range_x=(0.8, 1.3), p=1),
                    slt.RandomRotate(rotation_range=(-90, 90), p=1),
                    slt.RandomShear(
                        range_x=(-0.1, 0.1), range_y=(-0.1, 0.1), p=0.5),
                ]),
                                     v_range=(1e-5, 2e-3),
                                     p=0.5),
                slt.RandomScale(range_x=(0.5, 2.5), p=0.5),
            ]),
            slc.Stream()
        ],
                            probs=[0.7, 0.3]),
        slc.Stream([
            slt.PadTransform((args.pad_x, args.pad_y), padding='z'),
            slt.CropTransform((args.crop_x, args.crop_y), crop_mode='r'),
        ]),
        slc.SelectiveStream([
            slt.ImageSaltAndPepper(p=1, gain_range=0.01),
            slt.ImageBlur(p=1, blur_type='g', k_size=(3, 5)),
            slt.ImageBlur(p=1, blur_type='m', k_size=(3, 5)),
            slt.ImageAdditiveGaussianNoise(p=1, gain_range=0.5),
            slc.Stream([
                slt.ImageSaltAndPepper(p=1, gain_range=0.05),
                slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
            ]),
            slc.Stream([
                slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
                slt.ImageSaltAndPepper(p=1, gain_range=0.01),
            ]),
            slc.Stream()
        ],
                            n=1),
        slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)),
        cutout if args.use_cutout else slc.Stream(),
        partial(solt2torchhm, downsample=None, sigma=None),
    ])
    kvs.update('train_trf', ppl)
Example #4
0
def get_landmark_transform_kneel(config):
    cutout = slt.ImageCutOut(cutout_size=(int(config.dataset.cutout * config.dataset.augs.crop.crop_x),
                                          int(config.dataset.cutout * config.dataset.augs.crop.crop_y)),
                             p=0.5)
    # plus-minus 1.3 pixels
    jitter = slt.KeypointsJitter(dx_range=(-0.003, 0.003), dy_range=(-0.003, 0.003))
    ppl = transforms.Compose([
        ColorPaddingWithSide(p=0.05, pad_size=10, side=SIDES.RANDOM, color=(50,100)),
        TriangularMask(p=0.025, arm_lengths=(100, 50), side=SIDES.RANDOM, color=(50,100)),
        TriangularMask(p=0.025, arm_lengths=(50, 100), side=SIDES.RANDOM, color=(50,100)),
        LowVisibilityTransform(p=0.05, alpha=0.15, bgcolor=(50,100)),
        SubSampleUpScale(p=0.01),
        jitter if config.dataset.augs.use_target_jitter else slc.Stream(),
        slc.SelectiveStream([
            slc.Stream([
                slt.RandomFlip(p=0.5, axis=1),
                slt.RandomProjection(affine_transforms=slc.Stream([
                    slt.RandomScale(range_x=(0.9, 1.1), p=1),
                    slt.RandomRotate(rotation_range=(-90, 90), p=1),
                    slt.RandomShear(range_x=(-0.1, 0.1), range_y=(-0.1, 0.1), p=0.5),
                ]), v_range=(1e-5, 2e-3), p=0.5),
                # slt.RandomScale(range_x=(0.5, 2.5), p=0.5),
            ]),
            slc.Stream()
        ], probs=[0.7, 0.3]),
        slc.Stream([
            slt.PadTransform((config.dataset.augs.pad.pad_x, config.dataset.augs.pad.pad_y), padding='z'),
            slt.CropTransform((config.dataset.augs.crop.crop_x, config.dataset.augs.crop.crop_y), crop_mode='r'),
        ]),
        slc.SelectiveStream([
            slt.ImageSaltAndPepper(p=1, gain_range=0.01),
            slt.ImageBlur(p=1, blur_type='g', k_size=(3, 5)),
            slt.ImageBlur(p=1, blur_type='m', k_size=(3, 5)),
            slt.ImageAdditiveGaussianNoise(p=1, gain_range=0.5),
            slc.Stream([
                slt.ImageSaltAndPepper(p=1, gain_range=0.05),
                slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
            ]),
            slc.Stream([
                slt.ImageBlur(p=0.5, blur_type='m', k_size=(3, 5)),
                slt.ImageSaltAndPepper(p=1, gain_range=0.01),
            ]),
            slc.Stream()
        ], n=1),
        slt.ImageGammaCorrection(p=0.5, gamma_range=(0.5, 1.5)),
        cutout if config.dataset.use_cutout else slc.Stream(),
        partial(solt2torchhm, downsample=None, sigma=None),
    ])
    return ppl
Example #5
0
def get_wrist_fracture_transformation(crop_size):
    return transforms.Compose([
        SplitDataToFunction(wrap_img_target_solt),
        slc.Stream([
            slt.RandomFlip(p=1, axis=1),
            slt.RandomProjection(affine_transforms=slc.Stream([
                slt.RandomScale(range_x=(0.8, 1.2), p=1),
                slt.RandomShear(range_x=(-0.1, 0.1), p=0.5),
                slt.RandomShear(range_y=(-0.1, 0.1), p=0.5),
                slt.RandomRotate(rotation_range=(-10, 10), p=1),
            ]),
                                 v_range=(1e-5, 5e-4),
                                 p=0.8),
            slt.PadTransform(pad_to=(256, 256), padding='z'),
            slt.CropTransform(crop_size, crop_mode='r'),
            slc.SelectiveStream([
                slc.SelectiveStream([
                    slt.ImageSaltAndPepper(p=1, gain_range=0.01),
                    slt.ImageBlur(p=0.5, blur_type='m', k_size=(11, )),
                ]),
                slt.ImageAdditiveGaussianNoise(p=1, gain_range=0.5),
            ]),
            slt.ImageGammaCorrection(p=1, gamma_range=(0.5, 1.5)),
        ]),
        DataToFunction(solt_to_img_target),
        ApplyByIndex(transforms.ToTensor(), 0)
    ])
Example #6
0
def test_blur_samples_correctly(blur_t, k_size, sigma):
    trf = slt.ImageBlur(blur_type=blur_t, k_size=k_size, gaussian_sigma=sigma)
    trf.sample_transform()

    if isinstance(k_size, int):
        k_size = (k_size, )
    if sigma is None:
        sigma = 1

    assert trf.state_dict['k_size'] in k_size
    assert trf.state_dict['sigma'] == sigma
Example #7
0
def test_blur_arguments(blur_t, k_size, sigma, to_catch):
    with pytest.raises(to_catch):
        slt.ImageBlur(blur_type=blur_t, k_size=k_size, gaussian_sigma=sigma)
Example #8
0
def train_test_transforms(conf, mean=None, std=None):
    trf = conf['training']
    prob = trf['transform_probability']
    crop_size = tuple(trf['crop_size'])
    # Training transforms
    if trf['uCT']:
        train_transforms = [
            slt.RandomProjection(slc.Stream([
                slt.RandomRotate(rotation_range=tuple(trf['rotation_range']),
                                 p=prob),
                slt.RandomScale(range_x=tuple(trf['scale_range']),
                                range_y=tuple(trf['scale_range']),
                                same=False,
                                p=prob),
                slt.RandomShear(range_x=tuple(trf['shear_range']),
                                range_y=tuple(trf['shear_range']),
                                p=prob),
                slt.RandomTranslate(range_x=trf['translation_range'],
                                    range_y=trf['translation_range'],
                                    p=prob)
            ]),
                                 v_range=tuple(trf['v_range'])),
            # Spatial
            slt.RandomFlip(p=prob),
            slt.PadTransform(pad_to=crop_size),
            slt.CropTransform(crop_mode='r', crop_size=crop_size),
            # Intensity

            #slt.ImageGammaCorrection(gamma_range=tuple(trf['gamma_range']), p=prob),
            #slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']),
            #                   s_range=tuple(trf['hsv_range']),
            #                   v_range=tuple(trf['hsv_range']), p=prob),
            # Brightness/contrast
            slc.SelectiveStream([
                slt.ImageRandomBrightness(brightness_range=tuple(
                    trf['brightness_range']),
                                          p=prob),
                slt.ImageRandomContrast(contrast_range=trf['contrast_range'],
                                        p=prob)
            ]),
            # Noise
            slc.SelectiveStream([
                slt.ImageSaltAndPepper(p=prob,
                                       gain_range=trf['gain_range_sp']),
                slt.ImageAdditiveGaussianNoise(
                    p=prob, gain_range=trf['gain_range_gn']),
                slc.SelectiveStream([
                    slt.ImageBlur(p=prob,
                                  blur_type='g',
                                  k_size=(3, 7, 11),
                                  gaussian_sigma=tuple(trf['sigma'])),
                    slt.ImageBlur(p=prob,
                                  blur_type='m',
                                  k_size=(3, 7, 11),
                                  gaussian_sigma=tuple(trf['sigma']))
                ])
            ])
        ]
    else:
        train_transforms = [
            # Projection
            slt.RandomProjection(
                slc.Stream([
                    slt.RandomRotate(rotation_range=tuple(
                        trf['rotation_range']),
                                     p=prob),
                    slt.RandomScale(range_x=tuple(trf['scale_range']),
                                    range_y=tuple(trf['scale_range']),
                                    same=False,
                                    p=prob),
                    #slt.RandomShear(range_x=tuple(trf['shear_range']),
                    #                range_y=tuple(trf['shear_range']), p=prob),
                    #slt.RandomTranslate(range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob)
                ]),
                v_range=tuple(trf['v_range'])),
            # Spatial
            slt.RandomFlip(p=prob),
            slt.PadTransform(pad_to=crop_size[1]),
            slt.CropTransform(crop_mode='r', crop_size=crop_size),
            # Intensity
            # Add an empty stream
            #slc.SelectiveStream([]),
            slc.SelectiveStream([
                slt.ImageGammaCorrection(gamma_range=tuple(trf['gamma_range']),
                                         p=prob),
                slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']),
                                   s_range=tuple(trf['hsv_range']),
                                   v_range=tuple(trf['hsv_range']),
                                   p=prob)
            ]),
            slc.SelectiveStream([
                slt.ImageRandomBrightness(brightness_range=tuple(
                    trf['brightness_range']),
                                          p=prob),
                slt.ImageRandomContrast(contrast_range=trf['contrast_range'],
                                        p=prob)
            ]),
            slc.SelectiveStream([
                slt.ImageSaltAndPepper(p=prob,
                                       gain_range=trf['gain_range_sp']),
                slt.ImageAdditiveGaussianNoise(
                    p=prob, gain_range=trf['gain_range_gn']),
                slc.SelectiveStream([
                    slt.ImageBlur(p=prob,
                                  blur_type='g',
                                  k_size=(3, 7, 11),
                                  gaussian_sigma=tuple(trf['sigma'])),
                    slt.ImageBlur(p=prob,
                                  blur_type='m',
                                  k_size=(3, 7, 11),
                                  gaussian_sigma=tuple(trf['sigma']))
                ])
            ])
        ]

    train_trf = [
        wrap_solt,
        #slc.Stream(train_transforms),
        slc.Stream([
            slt.PadTransform(pad_to=crop_size[1]),
            slt.CropTransform(crop_mode='r', crop_size=crop_size)
        ]),
        unwrap_solt,
        ApplyTransform(numpy2tens, (0, 1, 2))
    ]
    # Validation transforms
    val_trf = [
        wrap_solt,
        slc.Stream([
            slt.PadTransform(pad_to=crop_size[1]),
            slt.CropTransform(crop_mode='r', crop_size=crop_size)
        ]), unwrap_solt,
        ApplyTransform(numpy2tens, idx=(0, 1, 2))
    ]
    # Test transforms
    test_trf = [unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2))]

    # Use normalize_channel_wise if mean and std not calculated
    if mean is not None and std is not None:
        train_trf.append(
            ApplyTransform(partial(normalize_channel_wise, mean=mean,
                                   std=std)))

    if mean is not None and std is not None:
        val_trf.append(
            ApplyTransform(partial(normalize_channel_wise, mean=mean,
                                   std=std)))

    # Compose transforms
    train_trf_cmp = Compose(train_trf)
    val_trf_cmp = Compose(val_trf)
    test_trf_cmp = Compose(test_trf)

    return {
        'train': train_trf_cmp,
        'val': val_trf_cmp,
        'test': test_trf_cmp,
        'train_list': train_trf,
        'val_list': val_trf,
        'test_list': test_trf
    }
Example #9
0
def train_test_transforms(conf, mean=None, std=None, crop_size=(512, 1024)):
    """
    Compiles the different image augmentations that are used for input images.

    :param conf: Transformation parameters
    :param mean: Dataset image mean
    :param std: Dataset image std
    :param crop_size: Image size for the segmentation model
    :return: Compiled transformation objects, and lists of the used transforms
    """
    trf = conf['training']
    prob = trf['transform_probability']
    # Training transforms

    # 3D transforms
    if trf['experiment'] == '3D':
        train_transforms = [
            slc.SelectiveStream([
                slc.Stream([
                    slt.RandomProjection(
                        slc.Stream([
                            slt.RandomRotate(rotation_range=tuple(
                                trf['rotation_range']),
                                             p=prob),
                            slt.RandomScale(range_x=tuple(trf['scale_range']),
                                            range_y=tuple(trf['scale_range']),
                                            same=False,
                                            p=prob),
                            #slt.RandomShear(range_x=tuple(trf['shear_range']),
                            #                range_y=tuple(trf['shear_range']), p=prob),
                            slt.RandomTranslate(
                                range_x=trf['translation_range'],
                                range_y=trf['translation_range'],
                                p=prob)
                        ]),
                        v_range=None  #tuple(trf['v_range'])
                    ),
                    # Spatial
                    slt.RandomFlip(p=prob),
                    slt.PadTransform(pad_to=crop_size),
                    slt.CropTransform(crop_mode='r', crop_size=crop_size),

                    # Intensity
                    # Brightness/contrast
                    slc.SelectiveStream([
                        slt.ImageRandomBrightness(brightness_range=tuple(
                            trf['brightness_range']),
                                                  p=prob),
                        slt.ImageRandomContrast(
                            contrast_range=trf['contrast_range'], p=prob)
                    ]),
                    # Noise
                    slc.SelectiveStream([
                        slt.ImageSaltAndPepper(
                            p=prob, gain_range=trf['gain_range_sp']),
                        slt.ImageAdditiveGaussianNoise(
                            p=prob, gain_range=trf['gain_range_gn']),
                        slc.SelectiveStream([
                            slt.ImageBlur(p=prob,
                                          blur_type='g',
                                          k_size=(3, 7, 11),
                                          gaussian_sigma=tuple(trf['sigma'])),
                            slt.ImageBlur(p=prob,
                                          blur_type='m',
                                          k_size=(3, 7, 11),
                                          gaussian_sigma=tuple(trf['sigma']))
                        ])
                    ])
                ]),

                # Empty stream
                slc.Stream([
                    slt.PadTransform(pad_to=crop_size),
                    slt.CropTransform(crop_mode='r', crop_size=crop_size)
                ])
            ])
        ]

    # 2D transforms
    else:
        train_transforms = [
            slc.SelectiveStream([
                slc.Stream([
                    # Projection
                    slt.RandomProjection(
                        slc.Stream([
                            slt.RandomRotate(rotation_range=tuple(
                                trf['rotation_range']),
                                             p=prob),
                            slt.RandomScale(range_x=tuple(trf['scale_range']),
                                            range_y=tuple(trf['scale_range']),
                                            same=False,
                                            p=prob),
                            # slt.RandomShear(range_x=tuple(trf['shear_range']),
                            #                range_y=tuple(trf['shear_range']), p=prob),
                            slt.RandomTranslate(
                                range_x=trf['translation_range'],
                                range_y=trf['translation_range'],
                                p=prob)
                        ]),
                        v_range=tuple(trf['v_range'])),
                    # Spatial
                    slt.RandomFlip(p=prob),
                    slt.PadTransform(pad_to=crop_size),
                    slt.CropTransform(crop_mode='r', crop_size=crop_size),
                    # Intensity
                    slc.SelectiveStream([
                        slt.ImageGammaCorrection(gamma_range=tuple(
                            trf['gamma_range']),
                                                 p=prob),
                        slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']),
                                           s_range=tuple(trf['hsv_range']),
                                           v_range=tuple(trf['hsv_range']),
                                           p=prob)
                    ]),
                    slc.SelectiveStream([
                        slt.ImageRandomBrightness(brightness_range=tuple(
                            trf['brightness_range']),
                                                  p=prob),
                        slt.ImageRandomContrast(
                            contrast_range=trf['contrast_range'], p=prob)
                    ]),
                    slc.SelectiveStream([
                        slt.ImageSaltAndPepper(
                            p=prob, gain_range=trf['gain_range_sp']),
                        slt.ImageAdditiveGaussianNoise(
                            p=prob, gain_range=trf['gain_range_gn']),
                        slc.SelectiveStream([
                            slt.ImageBlur(p=prob,
                                          blur_type='g',
                                          k_size=(3, 7, 11),
                                          gaussian_sigma=tuple(trf['sigma'])),
                            slt.ImageBlur(p=prob,
                                          blur_type='m',
                                          k_size=(3, 7, 11),
                                          gaussian_sigma=tuple(trf['sigma']))
                        ])
                    ])
                ]),

                # Empty stream
                slc.Stream([
                    slt.PadTransform(pad_to=crop_size),
                    slt.CropTransform(crop_mode='r', crop_size=crop_size)
                ])
            ])
        ]

    # Compile training transforms
    train_trf = [
        # Move to SOLT format
        wrap_solt,
        # Transforms
        slc.Stream(train_transforms),
        # Extract image
        unwrap_solt,
        # Move to tensor
        ApplyTransform(numpy2tens, (0, 1, 2))
    ]

    # Validation transforms
    val_trf = [
        wrap_solt,
        slc.Stream([
            slt.PadTransform(pad_to=crop_size[1]),
            slt.CropTransform(crop_mode='r', crop_size=crop_size)
        ]), unwrap_solt,
        ApplyTransform(numpy2tens, idx=(0, 1, 2))
    ]

    # Test transforms
    test_trf = [unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2))]

    # Normalize train and val images if mean and std are given
    if mean is not None and std is not None:
        train_trf.append(
            ApplyTransform(partial(normalize_channel_wise, mean=mean,
                                   std=std)))

    if mean is not None and std is not None:
        val_trf.append(
            ApplyTransform(partial(normalize_channel_wise, mean=mean,
                                   std=std)))

    # Compose transforms
    train_trf_cmp = Compose(train_trf)
    val_trf_cmp = Compose(val_trf)
    test_trf_cmp = Compose(test_trf)

    return {
        'train': train_trf_cmp,
        'val': val_trf_cmp,
        'test': test_trf_cmp,
        'train_list': train_trf,
        'val_list': val_trf,
        'test_list': test_trf
    }
                slt.RandomRotate(rotation_range=(-90, 90), p=1),
                slt.RandomShear(range_x=(-0.2, 0.2), range_y=None, p=0.7),
            ]),
                                 v_range=(1e-6, 3e-4),
                                 p=1),
            # Various cropping and padding tricks
            slt.PadTransform(1000, 'z'),
            slt.CropTransform(1000, crop_mode='c'),
            slt.CropTransform(950, crop_mode='r'),
            slt.PadTransform(1000, 'z'),
            # Intensity augmentations
            slt.ImageGammaCorrection(p=1, gamma_range=(0.5, 3)),
            slc.SelectiveStream([
                slc.SelectiveStream([
                    slt.ImageSaltAndPepper(p=1, gain_range=0.01),
                    slt.ImageBlur(p=0.5, blur_type='m', k_size=(11, )),
                ]),
                slt.ImageAdditiveGaussianNoise(p=1, gain_range=0.5),
            ]),
        ])

        for i in range(10):
            res = stream(dc)
            img_res, kp_c, lbl_c = res.data
            fig = plt.figure(figsize=(10, 10))

            ax = fig.add_subplot(1, 1, 1)
            ax.imshow(img_res, cmap=plt.cm.Greys_r)

            for pts, cls in zip([kp_c.data], ['Cardiomegaly']):
                text_bbox = dict(facecolor='red', alpha=0.7, lw=0)