Example #1
0
def main(args):
    path = os.path.join(os.getcwd(), 'soft_label', 'soft_label_resnet50.txt')
    if not os.path.isfile(path):
        print('soft label file is not exist')

    train_loader = getTrainLoader(args, path)
    _, val_loader, num_query, num_classes, train_size = make_data_loader(args)

    #train_loader, val_loader, num_query, num_classes, train_size = make_data_loader(args)
    model = build_model(args, num_classes)
    optimizer = make_optimizer(args, model)
    scheduler = WarmupMultiStepLR(optimizer, [30, 55], 0.1, 0.01, 5, "linear")

    loss_func = make_loss(args)

    model.to(device)

    for epoch in range(args.Epochs):
        model.train()
        running_loss = 0.0
        running_klloss = 0.0
        running_softloss = 0.0
        running_corrects = 0.0
        for index, data in enumerate(tqdm(train_loader)):
            img, target, soft_target = data
            img = img.cuda()
            target = target.cuda()
            soft_target = soft_target.cuda()
            score, _ = model(img)
            preds = torch.max(score.data, 1)[1]
            loss, klloss, softloss = loss_func(score, target, soft_target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            running_klloss += klloss.item()
            running_softloss += softloss.item()
            running_corrects += float(torch.sum(preds == target.data))

        scheduler.step()
        epoch_loss = running_loss / train_size
        epoch_klloss = running_klloss / train_size
        epoch_softloss = running_softloss / train_size
        epoch_acc = running_corrects / train_size
        print(
            "Epoch {}   Loss : {:.4f} KLLoss:{:.8f}  SoftLoss:{:.4f}  Acc:{:.4f}"
            .format(epoch, epoch_loss, epoch_klloss, epoch_softloss,
                    epoch_acc))

        if (epoch + 1) % args.n_save == 0:
            evaluator = Evaluator(model, val_loader, num_query)
            cmc, mAP = evaluator.run()
            print('---------------------------')
            print("CMC Curve:")
            for r in [1, 5, 10]:
                print("Rank-{} : {:.1%}".format(r, cmc[r - 1]))
            print("mAP : {:.1%}".format(mAP))
            print('---------------------------')
            save_model(args, model, optimizer, epoch)
Example #2
0
def train(cfg):
    # prepare dataset

    train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)

    # prepare model
    model = build_model(cfg, num_classes)
    if cfg.SOLVER.FINETUNE:
        model.load_state_dict(torch.load(cfg.TEST.WEIGHT).module.state_dict())
    model = nn.DataParallel(model)


    optimizer = make_optimizer(cfg, model)
    scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                  cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)
    # scheduler = WarmupStepLR(optimizer,3, 9, cfg.SOLVER.WARMUP_FACTOR,
    #                               cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)

    loss_func = make_loss(cfg)

    arguments = {}

    do_train(
        cfg,
        model,
        train_loader,
        val_loader,
        optimizer,
        scheduler,
        loss_func,
        num_query
    )
Example #3
0
def train(cfg):
    model = build_model(cfg)
    # model.fix_bn()
    model = nn.DataParallel(model)
    torch.backends.cudnn.benchmark = True
    optimizer = make_optimizer(cfg, model)
    criterion = make_criterion(cfg)
    scheduler = make_lr_scheduler(cfg, optimizer)
    metrics = make_metrics(cfg)
    train_loader = make_dataloader(cfg, is_train=True)
    val_loader = make_dataloader(cfg, is_train=False)

    cfg.TOOLS.image_n = 3
    #image_3_dataloader = make_inference_dataloader(cfg=cfg)
    image_3_dataloader = None
    cfg.TOOLS.image_n = 4
    #image_4_dataloader = make_inference_dataloader(cfg=cfg)
    image_4_dataloader = None

    do_train(cfg,
             model=model,
             train_loader=train_loader,
             val_loader=val_loader,
             optimizer=optimizer,
             scheduler=scheduler,
             loss_fn=criterion,
             metrics=metrics,
             image_3_dataloader=image_3_dataloader,
             image_4_dataloader=image_4_dataloader)
Example #4
0
def train(cfg, logger):
    model = build_model(cfg)
    device = cfg.MODEL.DEVICE

    optimizer, lr_schedule = make_optimizer(cfg, model)
    metric_fc = None
    loss_fn = get_loss_fn(cfg, logger)
    logger.info("----------------------------------------------")
    train_loader = make_data_loader(cfg, is_train=True)
    val_loader = make_data_loader(cfg, is_train=False)

    loss_fn2 = torch.nn.MSELoss()

    do_train(
        cfg,
        model,
        metric_fc,
        train_loader,
        val_loader,
        optimizer,
        lr_schedule,
        loss_fn,
        loss_fn2,
        logger,
    )
Example #5
0
 def __init__(self, cfg, num_classes):
     self.device = cfg.MODEL.DEVICE
     self.model = build_model(cfg, num_classes)
     self.loss = Loss(cfg, num_classes, self.model.in_planes)
     self.optimizer = make_optimizer(cfg, self.model)
     self.scheduler = WarmupMultiStepLR(self.optimizer,
                                        cfg.WARMUP.STEPS,
                                        cfg.WARMUP.GAMMA,
                                        cfg.WARMUP.FACTOR,
                                        cfg.WARMUP.MAX_EPOCHS,
                                        cfg.WARMUP.METHOD)
     if cfg.APEX.IF_ON:
         logger.info("Using apex")
         try:
             import apex
         except ImportError:
             raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")
         assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."
         #
         # if cfg.APEX.IF_SYNC_BN:
         #     logger.info("Using apex synced BN")
         #     self.module = apex.parallel.convert_syncbn_model(self.module)
     if self.device is 'cuda':
         self.model = self.model.cuda()
         if cfg.APEX.IF_ON:
             from apex import amp
             self.model, self.optimizer = amp.initialize(self.model,
                                                         self.optimizer,
                                                         opt_level=cfg.APEX.OPT_LEVEL,
                                                         keep_batchnorm_fp32=None if cfg.APEX.OPT_LEVEL == 'O1' else True,
                                                         loss_scale=cfg.APEX.LOSS_SCALE[0])
Example #6
0
def main():
    output_dir = cfg.MODEL.OUTPUT_DIR
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    logger = setup_logger("tracker", output_dir, 0)
    logger.info("Running with config:\n{}".format(cfg))
    torch.backends.cudnn.benchmark = True

    train_loader, val_loader = make_data_loader(cfg)

    model = build_model(cfg)

    optimizer = make_optimizer(cfg, model)
    scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                  cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)

    loss_func = make_loss(cfg)

    do_train(
        cfg,
        model,
        train_loader,
        val_loader,
        optimizer,
        scheduler,
        loss_func
    )
Example #7
0
def train(train_loader, num_classes):
    parser = argparse.ArgumentParser(description="ReID Baseline Training")
    parser.add_argument(
        "--config_file", default="", help="path to config file", type=str
    )
    parser.add_argument("opts", help="Modify config options using the command-line", default=None,
                        nargs=argparse.REMAINDER)

    args = parser.parse_args()

    if args.config_file != "":
        cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    set_seed(cfg.SOLVER.SEED)

    output_dir = cfg.OUTPUT_DIR
    if output_dir and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    logger = setup_logger("reid_baseline", output_dir, if_train=True)
    logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
    logger.info(args)

    if args.config_file != "":
        logger.info("Loaded configuration file {}".format(args.config_file))
        with open(args.config_file, 'r') as cf:
            config_str = "\n" + cf.read()
            logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID


    if cfg.MODEL.PRETRAIN_CHOICE == 'finetune':
        model = make_model(cfg, num_class=num_classes)
        model.load_param_finetune(cfg.MODEL.PRETRAIN_PATH)
        print('Loading pretrained model for finetuning......')
    else:
        model = make_model(cfg, num_class=num_classes)

    loss_func = make_loss(cfg, num_classes=num_classes)

    optimizer = make_optimizer(cfg, model)
    
    scheduler = WarmupCosineAnnealingLR(optimizer, cfg.SOLVER.MAX_EPOCHS,  cfg.SOLVER.DELAY_ITERS, cfg.SOLVER.ETA_MIN_LR, 
                                cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_EPOCHS, cfg.SOLVER.WARMUP_METHOD)
    logger.info("use WarmupCosineAnnealingLR, delay_step:{}".format(cfg.SOLVER.DELAY_ITERS))

    do_train(
        cfg,
        model,
        train_loader,
        optimizer,
        scheduler,  # modify for using self trained model
        loss_func
    )
Example #8
0
def train(cfg):

    logger = setup_logger("reid_baseline", cfg.OUTPUT_DIR)
    logger.info("Running with config:\n{}".format(cfg))

    # prepare camstyle dataset
    train_loader, train_camstyle_loader, val_loader, num_query, num_classes = make_camstyle_data_loader(
        cfg)
    num_classes.append(-1)

    # prepare model
    model = build_model(cfg, num_classes)

    optimizer, _ = make_optimizer(cfg, model)
    loss_fn = make_loss(cfg, num_classes)

    # Add for using self trained model
    if cfg.MODEL.PRETRAIN_CHOICE == 'resume':
        start_epoch = eval(
            cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')
            [-1])
        logger.info('Start epoch:%d' % start_epoch)
        path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace(
            'model', 'optimizer')
        logger.info('Path to the checkpoint of optimizer:%s' %
                    path_to_optimizer)
        model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
        optimizer.load_state_dict(torch.load(path_to_optimizer))
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                      cfg.SOLVER.GAMMA,
                                      cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS,
                                      cfg.SOLVER.WARMUP_METHOD, start_epoch)
    elif cfg.MODEL.PRETRAIN_CHOICE == 'self' or cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
        start_epoch = 0
        model.load_param(cfg.MODEL.PRETRAIN_PATH, cfg.MODEL.PRETRAIN_CHOICE)
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                      cfg.SOLVER.GAMMA,
                                      cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS,
                                      cfg.SOLVER.WARMUP_METHOD)
    else:
        logger.info(
            'Only support pretrain_choice for imagenet and self, but got {}'.
            format(cfg.MODEL.PRETRAIN_CHOICE))

    do_train(
        cfg,
        model,
        train_loader,
        val_loader,
        optimizer,
        scheduler,  # modify for using self trained model
        loss_fn,
        num_query,
        start_epoch,  # add for using self trained model
        0,
        train_camstyle_loader)
Example #9
0
def train(cfg):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes, clustering_loader = make_data_loader(
        cfg)

    # prepare model
    model = build_model(cfg, num_classes)

    if cfg.MODEL.IF_WITH_CENTER == 'on':
        loss_func, center_criterion_part, center_criterion_global, center_criterion_fore = make_loss_with_center(
            cfg, num_classes)
        optimizer, optimizer_center = make_optimizer_with_center(
            cfg, model, center_criterion_part, center_criterion_global,
            center_criterion_fore)
    else:
        loss_func = make_loss(cfg, num_classes)
        optimizer = make_optimizer(cfg, model)

    # Add for using self trained model
    if cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
        start_epoch = 0
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                      cfg.SOLVER.GAMMA,
                                      cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS,
                                      cfg.SOLVER.WARMUP_METHOD)
    else:
        print('Only support pretrain_choice for imagenet, but got {}'.format(
            cfg.MODEL.PRETRAIN_CHOICE))

    if cfg.MODEL.IF_WITH_CENTER == 'on':
        do_train_with_center(
            cfg,
            model,
            center_criterion_part,
            center_criterion_global,
            center_criterion_fore,
            train_loader,
            val_loader,
            optimizer,
            optimizer_center,
            scheduler,  # modify for using self trained model
            loss_func,
            num_query,
            start_epoch,  # add for using self trained model
            clustering_loader)
    else:
        do_train(
            cfg,
            model,
            train_loader,
            val_loader,
            optimizer,
            scheduler,  # modify for using self trained model
            loss_func,
            num_query,
            start_epoch,  # add for using self trained model
            clustering_loader)
Example #10
0
 def get_autoencoder_component(self, cfg):
     self.device = cfg.MODEL.DEVICE
     self.model = AutoEncoder(cfg.EBLL.IN_PLANES, cfg.EBLL.CODE_SIZE)
     self.loss = AutoEncoderLoss(cfg)
     copy_cfg = copy.deepcopy(cfg)
     copy_cfg['OPTIMIZER']['BASE_LR'] = copy_cfg.EBLL.OPTIMIZER_BASE_LR
     copy_cfg['OPTIMIZER']['NAME'] = 'SGD'
     self.optimizer = make_optimizer(copy_cfg, self.model)
     self.scheduler = ExponentialLR(self.optimizer, gamma=0.9)
Example #11
0
def train(cfg,
          local_rank,
          distributed,
          logger=None,
          tblogger=None,
          transfer_weight=False,
          change_lr=False):
    device = torch.device('cuda')

    # create model
    logger.info('Creating model "{}"'.format(cfg.MODEL.ARCHITECTURE))
    model = build_model(cfg).to(device)
    criterion = torch.nn.CrossEntropyLoss(ignore_index=255).to(device)
    optimizer = make_optimizer(cfg, model)
    # model, optimizer = apex.amp.initialize(model, optimizer, opt_level='O2')
    scheduler = make_lr_scheduler(cfg, optimizer)

    if distributed:
        # model = apex.parallel.DistributedDataParallel(model)
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[local_rank],
            output_device=local_rank,
            broadcast_buffers=True,
        )

    save_to_disk = get_rank() == 0

    # checkpoint
    arguments = {}
    arguments['iteration'] = 0
    arguments['best_iou'] = 0
    checkpointer = Checkpointer(model, optimizer, scheduler, cfg.LOGS.DIR,
                                save_to_disk, logger)
    extra_checkpoint_data = checkpointer.load(
        f=cfg.MODEL.WEIGHT,
        model_weight_only=transfer_weight,
        change_scheduler=change_lr)
    arguments.update(extra_checkpoint_data)

    # data_loader
    logger.info('Loading dataset "{}"'.format(cfg.DATASETS.TRAIN))
    data_loader = make_data_loader(cfg, 'train', distributed)
    data_loader_val = make_data_loader(cfg, 'val', distributed)

    do_train(cfg,
             model=model,
             data_loader=data_loader,
             optimizer=optimizer,
             scheduler=scheduler,
             criterion=criterion,
             checkpointer=checkpointer,
             device=device,
             arguments=arguments,
             tblogger=tblogger,
             data_loader_val=data_loader_val,
             distributed=distributed)
Example #12
0
def train(cfg):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)

    # prepare model
    model = build_model(cfg, num_classes)

    total = sum([param.nelement() for param in model.parameters()])
    print("Number of parameter: %.2fM" % (total / 1e6))

    if cfg.MODEL.METRIC_LOSS_TYPE == 'triplet':
        print('Train without center loss, the loss type is',
              cfg.MODEL.METRIC_LOSS_TYPE)
        optimizer = make_optimizer(cfg, model)
        loss_func = make_loss(cfg, num_classes)

        # Add for using self trained model
        if cfg.MODEL.PRETRAIN_CHOICE == 'self':
            start_epoch = eval(
                cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')
                [-1])
            print('Start epoch:', start_epoch)
            path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace(
                'model', 'optimizer')
            print('Path to the checkpoint of optimizer:', path_to_optimizer)
            model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
            optimizer.load_state_dict(torch.load(path_to_optimizer))
            scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                          cfg.SOLVER.GAMMA,
                                          cfg.SOLVER.WARMUP_FACTOR,
                                          cfg.SOLVER.WARMUP_ITERS,
                                          cfg.SOLVER.WARMUP_METHOD,
                                          start_epoch)
        elif cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
            start_epoch = 0
            scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                          cfg.SOLVER.GAMMA,
                                          cfg.SOLVER.WARMUP_FACTOR,
                                          cfg.SOLVER.WARMUP_ITERS,
                                          cfg.SOLVER.WARMUP_METHOD)
        else:
            print(
                'Only support pretrain_choice for imagenet and self, but got {}'
                .format(cfg.MODEL.PRETRAIN_CHOICE))

        do_train(
            cfg,
            model,
            train_loader,
            val_loader,
            optimizer,
            scheduler,  # modify for using self trained model
            loss_func,
            num_query,
            start_epoch  # add for using self trained model
        )
Example #13
0
 def get_component(self, cfg, num_classes):
     self.device = cfg.MODEL.DEVICE
     self.model = build_model(cfg, num_classes)
     self.loss = Loss(cfg, num_classes, self.model.in_planes)
     self.optimizer = make_optimizer(cfg, self.model)
     self.scheduler = WarmupMultiStepLR(self.optimizer,
                                        cfg.WARMUP.STEPS,
                                        cfg.WARMUP.GAMMA,
                                        cfg.WARMUP.FACTOR,
                                        cfg.WARMUP.MAX_EPOCHS,
                                        cfg.WARMUP.METHOD)
Example #14
0
def train(cfg):
    model = build_model(cfg)
    device = cfg.MODEL.DEVICE

    optimizer = make_optimizer(cfg, model)
    scheduler = None

    arguments = {}

    train_loader = make_data_loader(cfg, is_train=True)
    val_loader = make_data_loader(cfg, is_train=False)

    do_train(cfg, model, train_loader, val_loader, optimizer, F.cross_entropy)
Example #15
0
def main(args):
    sys.stdout = Logger(
        os.path.join(args.log_path, args.log_description,
                     'log' + time.strftime(".%m_%d_%H:%M:%S") + '.txt'))

    train_loader, val_loader, num_query, num_classes, train_size = make_data_loader(
        args)
    model = build_model(args, num_classes)
    print(model)
    optimizer = make_optimizer(args, model)
    scheduler = WarmupMultiStepLR(optimizer, [30, 55], 0.1, 0.01, 5, "linear")

    loss_func = make_loss(args)

    model.to(device)

    for epoch in range(args.Epochs):
        model.train()
        running_loss = 0.0
        running_corrects = 0.0
        for index, data in enumerate(tqdm(train_loader)):
            img, target = data
            img = img.cuda()
            target = target.cuda()
            score, _ = model(img)
            preds = torch.max(score.data, 1)[1]
            loss = loss_func(score, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            running_corrects += float(torch.sum(preds == target.data))

        scheduler.step()
        epoch_loss = running_loss / train_size
        epoch_acc = running_corrects / train_size
        print("Epoch {}   Loss : {:.6f}   Acc:{:.4f}".format(
            epoch, epoch_loss, epoch_acc))

        if (epoch + 1) % args.n_save == 0:
            evaluator = Evaluator(model, val_loader, num_query)
            cmc, mAP = evaluator.run()
            print('---------------------------')
            print("CMC Curve:")
            for r in [1, 5, 10]:
                print("Rank-{} : {:.1%}".format(r, cmc[r - 1]))
            print("mAP : {:.1%}".format(mAP))
            print('---------------------------')
            save_model(args, model, optimizer, epoch)
Example #16
0
def train(cfg, cfg_hr):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)
    # prepare model
    model = build_model(cfg, cfg_hr, num_classes)
    model = nn.DataParallel(model)
    if cfg.MODEL.IF_WITH_CENTER == 'no':
        print('Train without center loss, the loss type is', cfg.MODEL.METRIC_LOSS_TYPE)
        optimizer = make_optimizer(cfg, model)
        print(cfg.SOLVER.MARGIN)
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)

        loss_func = make_loss(cfg, num_classes)     # modified by gu

        arguments = {}

        do_train(
            cfg,
            model,
            train_loader,
            val_loader,
            optimizer,
            scheduler,
            loss_func,
            num_query
        )
    elif cfg.MODEL.IF_WITH_CENTER == 'yes':
        print('Train with center loss, the loss type is', cfg.MODEL.METRIC_LOSS_TYPE)
        loss_func, center_criterion = make_loss_with_center(cfg, num_classes)  # modified by gu
        optimizer, optimizer_center = make_optimizer_with_center(cfg, model, center_criterion)
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)

        arguments = {}

        do_train_with_center(
            cfg,
            model,
            center_criterion,
            train_loader,
            val_loader,
            optimizer,
            optimizer_center,
            scheduler,
            loss_func,
            num_query
        )
    else:
        print("Unsupported value for cfg.MODEL.IF_WITH_CENTER {}, only support yes or no!\n".format(cfg.MODEL.IF_WITH_CENTER))
def train(cfg):

    logger = setup_logger("reid_baseline", cfg.OUTPUT_DIR)
    logger.info("Running with config:\n{}".format(cfg))

    # prepare dataset
    val_data_loader, num_query = make_val_data_loader(cfg)
    num_classes = np.zeros(len(cfg.DATALOADER.SAMPLER_PROB)).astype(int) - 1
    source_dataset = init_dataset(cfg.SRC_DATA.NAMES, root_train=cfg.SRC_DATA.TRAIN_DIR, transfered=cfg.SRC_DATA.TRANSFERED)
    num_classes[0] = source_dataset.num_train_pids
    num_classes[1] = cfg.TGT_UNSUPDATA.CLUSTER_TOPK
    if cfg.MODEL.FINETUNE:
        num_classes[1] += 200

    # prepare model
    model = build_model(cfg, num_classes)

    optimizer,fixed_lr_idxs = make_optimizer(cfg, model)
    loss_fn = make_loss(cfg, num_classes)

    # Add for using self trained model
    if cfg.MODEL.PRETRAIN_CHOICE == 'resume':
        start_epoch = eval(cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')[-1])
        logger.info('Start epoch:%d' %start_epoch)
        path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace('model', 'optimizer')
        logger.info('Path to the checkpoint of optimizer:%s' %path_to_optimizer)
        model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
        optimizer.load_state_dict(torch.load(path_to_optimizer))
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD, start_epoch, fixed_lr_idxs)
    elif cfg.MODEL.PRETRAIN_CHOICE == 'self' or cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
        start_epoch = 0
        model.load_param(cfg.MODEL.PRETRAIN_PATH, cfg.MODEL.PRETRAIN_CHOICE)
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR, cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD, -1, fixed_lr_idxs)
        camera_model = build_camera_model(cfg, num_classes=5)
        camera_model.load_param(cfg.TEST.CAMERA_WEIGHT, cfg.MODEL.PRETRAIN_CHOICE)
    else:
        logger.info('Only support pretrain_choice for imagenet and self, but got {}'.format(cfg.MODEL.PRETRAIN_CHOICE))

    do_train(cfg,
            model,
            camera_model,
            val_data_loader,
            optimizer,
            scheduler,      # modify for using self trained model
            loss_fn,
            num_query,
            start_epoch,     # add for using self trained model
            0
            )
Example #18
0
def train(cfg):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)

    # prepare model
    model = build_model(cfg, num_classes)

    print('Train without center loss, the loss type is',
          cfg.MODEL.METRIC_LOSS_TYPE)
    optimizer = make_optimizer(cfg, model)
    loss_func = make_loss(cfg, num_classes)

    if cfg.MODEL.PRETRAIN_CHOICE == 'self':
        start_epoch = eval(
            cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')
            [-1])
        print('Start epoch:', start_epoch)
        path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace(
            'model', 'optimizer')
        print('Path to the checkpoint of optimizer:', path_to_optimizer)
        model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
        optimizer.load_state_dict(torch.load(path_to_optimizer))
        if cfg.MODEL.DEVICE == "cuda":
            for state in optimizer.state.values():
                for k, v in state.items():
                    if isinstance(v, torch.Tensor):
                        state[k] = v.cuda()
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                      cfg.SOLVER.GAMMA,
                                      cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS,
                                      cfg.SOLVER.WARMUP_METHOD, start_epoch)
    elif cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
        start_epoch = 0
        scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                      cfg.SOLVER.GAMMA,
                                      cfg.SOLVER.WARMUP_FACTOR,
                                      cfg.SOLVER.WARMUP_ITERS,
                                      cfg.SOLVER.WARMUP_METHOD)
    else:
        start_epoch = 0
        print('Only support pretrain_choice for imagenet and self, but got {}'.
              format(cfg.MODEL.PRETRAIN_CHOICE))

    arguments = {}

    do_train(cfg, model, train_loader, val_loader, optimizer, scheduler,
             loss_func, num_query, start_epoch)
Example #19
0
def train(cfg):
    model = build_model(cfg)
    device = cfg.MODEL.DEVICE

    optimizer = make_optimizer(cfg, model)


    train_loader = make_data_loader(cfg, csv = cfg.DATASETS.TRAIN, is_train=True)

    do_train(
        cfg,
        model,
        train_loader,
        optimizer,
        losses = [F.mse_loss, F.nll_loss],
    )
def main():
    init_env('1')
    loaders = make_data_loaders(cfg)
    model = build_model(cfg)
    model = model.cuda()
    task_name = 'base_unet'
    log_dir = os.path.join(cfg.LOG_DIR, task_name)
    cfg.TASK_NAME = task_name
    mkdir(log_dir)
    logger = setup_logger('train', log_dir, filename='train.log')
    logger.info(cfg)
    logger = setup_logger('eval', log_dir, filename='eval.log')
    optimizer, scheduler = make_optimizer(cfg, model)
    metrics = get_metrics(cfg)
    losses = get_losses(cfg)
    train_val(model, loaders, optimizer, scheduler, losses, metrics)
def train(cfg):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes, dataset = make_data_loader(cfg)

    # prepare model
    model = build_model(cfg, num_classes)
    print('Train without center loss, the loss type is', cfg['MODEL.METRIC_LOSS_TYPE'])
    optimizer = make_optimizer(cfg, model)
    loss_func = make_loss(cfg, num_classes, model.in_planes)    # modified by gu

    # Add for using self trained model
    if cfg['MODEL.PRETRAIN_CHOICE'] == 'continue':
        #start_epoch = eval(cfg['MODEL.PRETRAIN_PATH'].split('/')[-1].split('.')[0].split('_')[-1])
        start_epoch = 0
        print('Start epoch:', start_epoch)
        path_to_optimizer = cfg['MODEL.PRETRAIN_PATH'].replace('model', 'optimizer')
        print('Path to the checkpoint of optimizer:', path_to_optimizer)
        model.load_param(cfg['MODEL.PRETRAIN_PATH'])
        #optimizer = make_optimizer(cfg, model)
        scheduler = WarmupMultiStepLR(optimizer, cfg['SOLVER.STEPS'], cfg['SOLVER.GAMMA'], cfg['SOLVER.WARMUP_FACTOR'],
                                      cfg['SOLVER.WARMUP_ITERS'], cfg['SOLVER.WARMUP_METHOD'])
    elif cfg['MODEL.PRETRAIN_CHOICE'] == 'imagenet':
        start_epoch = 0
        scheduler = WarmupMultiStepLR(optimizer, cfg['SOLVER.STEPS'], cfg['SOLVER.GAMMA'], cfg['SOLVER.WARMUP_FACTOR'],
                                      cfg['SOLVER.WARMUP_ITERS'], cfg['SOLVER.WARMUP_METHOD'])
    elif cfg['MODEL.PRETRAIN_CHOICE'] == 'self' or cfg['MODEL.PRETRAIN_CHOICE'] == 'self-no-head':
        start_epoch = 0
        scheduler = WarmupMultiStepLR(optimizer, cfg['SOLVER.STEPS'], cfg['SOLVER.GAMMA'],
                                      cfg['SOLVER.WARMUP_FACTOR'],
                                      cfg['SOLVER.WARMUP_ITERS'], cfg['SOLVER.WARMUP_METHOD'])
    else:
        print('Only support pretrain_choice for imagenet and self, but got {}'.format(cfg['MODEL.PRETRAIN_CHOICE']))

    do_train(
        cfg,
        model,
        train_loader,
        val_loader,
        optimizer,
        scheduler,      # modify for using self trained model
        loss_func,
        num_query,
        start_epoch,     # add for using self trained model
        dataset
    )
Example #22
0
def train(cfg):
    model = build_fcn_model(cfg)

    optimizer = make_optimizer(cfg, model)

    arguments = {}

    data_loader = make_data_loader(cfg, is_train=True)
    val_loader = make_data_loader(cfg, is_train=False)

    do_train(
        cfg,
        model,
        data_loader,
        val_loader,
        optimizer,
        cross_entropy2d,
    )
Example #23
0
def train(cfg):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)
    # prepare model
    model = build_model(cfg, num_classes)

    optimizer = make_optimizer(cfg, model)
    scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                  cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                  cfg.SOLVER.WARMUP_ITERS,
                                  cfg.SOLVER.WARMUP_METHOD)

    loss_func = make_loss(cfg)

    arguments = {}

    do_train(cfg, model, train_loader, val_loader, optimizer, scheduler,
             loss_func, num_query)
Example #24
0
def train(cfg, local_rank, distributed):
    pretrained_base = os.path.join(cfg.TRAIN.model_root,
                                   cfg.TRAIN.backbone + '.pth')
    model = get_model(cfg.MODEL.model, pretrained_base=pretrained_base)
    device = torch.device(cfg.MODEL.device)
    model.to(device)
    if distributed:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    optimizer = make_optimizer(cfg, model)
    scheduler = make_lr_scheduler(cfg, optimizer)

    if distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[local_rank],
            output_device=local_rank,
        )

    arguments = {}
    arguments["iteration"] = 0

    output_dir = cfg.CONFIG.output_dir

    save_to_disk = ptutil.get_rank() == 0
    checkpointer = ptutil.CheckPointer(model, optimizer, scheduler, output_dir,
                                       save_to_disk)
    extra_checkpoint_data = checkpointer.load(cfg.TRAIN.weight)
    arguments.update(extra_checkpoint_data)

    data_loader = build_dataloader(
        cfg,
        train=True,
        distributed=distributed,
        start_iter=arguments["iteration"],
    )

    checkpoint_period = cfg.TRAIN.checkpoint_period

    training(model, data_loader, optimizer, scheduler, checkpointer, device,
             checkpoint_period, arguments)

    return model
Example #25
0
def train_net(cfg):
    print(cfg.NAME)
    print(cfg.DESCRIPTION)
    if not os.path.exists(cfg.OUTPUT_DIR):
        os.mkdir(cfg.OUTPUT_DIR)
    model = Network(cfg)
    device = torch.device(cfg.DEVICE)
    if cfg.PRETRAINED:
        model_path = cfg.PRETRAIN_MODEL
        model.load_state_dict(torch.load(model_path))
        print('loding weight from ', model_path)
    model.to(device)
    optimizer = make_optimizer(cfg, model)
    scheduler = make_lr_scheduler(cfg, optimizer)
    # output_dir = cfg.OUTPUT_DIR
    data_loader = make_data_loader(cfg, is_train=True)
    args = {}
    args['iteration'] = 0
    do_train(model, data_loader, optimizer, scheduler, device, args, cfg)
    print(cfg.NAME)
    return model
Example #26
0
            logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
    train_loader, val_loader, num_query, num_classes = make_dataloader(cfg)

    if cfg.MODEL.PRETRAIN_CHOICE == 'finetune':
        model = make_model(cfg, num_class=num_classes)
        model.load_param_finetune(cfg.MODEL.PRETRAIN_PATH)
        print('Loading pretrained model for finetuning......')
    else:
        model = make_model(cfg, num_class=num_classes)

    loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)

    optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
    scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                  cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                                  cfg.SOLVER.WARMUP_EPOCHS,
                                  cfg.SOLVER.WARMUP_METHOD)

    do_train(
        cfg,
        model,
        center_criterion,
        train_loader,
        val_loader,
        optimizer,
        optimizer_center,
        scheduler,  # modify for using self trained model
        loss_func,
Example #27
0
def train(cfg):
    # prepare dataset
    train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)

    # prepare model
    model = build_model(cfg, num_classes)

    if cfg.MODEL.IF_WITH_CENTER == 'no':
        print('Train without center loss, the loss type is',
              cfg.MODEL.METRIC_LOSS_TYPE)
        optimizer = make_optimizer(cfg, model)
        # scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
        #                               cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)

        loss_func = make_loss(cfg, num_classes)  # modified by gu

        # Add for using self trained model
        if cfg.MODEL.PRETRAIN_CHOICE == 'self':
            start_epoch = eval(
                cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')
                [-1])
            print('Start epoch:', start_epoch)
            path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace(
                'model', 'optimizer')
            print('Path to the checkpoint of optimizer:', path_to_optimizer)
            model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
            optimizer.load_state_dict(torch.load(path_to_optimizer))
            scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                          cfg.SOLVER.GAMMA,
                                          cfg.SOLVER.WARMUP_FACTOR,
                                          cfg.SOLVER.WARMUP_ITERS,
                                          cfg.SOLVER.WARMUP_METHOD,
                                          start_epoch)
        elif cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
            start_epoch = 0
            scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                          cfg.SOLVER.GAMMA,
                                          cfg.SOLVER.WARMUP_FACTOR,
                                          cfg.SOLVER.WARMUP_ITERS,
                                          cfg.SOLVER.WARMUP_METHOD)
        else:
            print(
                'Only support pretrain_choice for imagenet and self, but got {}'
                .format(cfg.MODEL.PRETRAIN_CHOICE))

        arguments = {}

        do_train(
            cfg,
            model,
            train_loader,
            val_loader,
            optimizer,
            scheduler,  # modify for using self trained model
            loss_func,
            num_query,
            start_epoch  # add for using self trained model
        )
    elif cfg.MODEL.IF_WITH_CENTER == 'yes':
        print('Train with center loss, the loss type is',
              cfg.MODEL.METRIC_LOSS_TYPE)
        loss_func, center_criterion = make_loss_with_center(
            cfg, num_classes)  # modified by gu
        optimizer, optimizer_center = make_optimizer_with_center(
            cfg, model, center_criterion)
        # scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
        #                               cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)

        arguments = {}

        # Add for using self trained model
        if cfg.MODEL.PRETRAIN_CHOICE == 'self':
            start_epoch = eval(
                cfg.MODEL.PRETRAIN_PATH.split('/')[-1].split('.')[0].split('_')
                [-1])
            print('Start epoch:', start_epoch)
            path_to_optimizer = cfg.MODEL.PRETRAIN_PATH.replace(
                'model', 'optimizer')
            print('Path to the checkpoint of optimizer:', path_to_optimizer)
            path_to_center_param = cfg.MODEL.PRETRAIN_PATH.replace(
                'model', 'center_param')
            print('Path to the checkpoint of center_param:',
                  path_to_center_param)
            path_to_optimizer_center = cfg.MODEL.PRETRAIN_PATH.replace(
                'model', 'optimizer_center')
            print('Path to the checkpoint of optimizer_center:',
                  path_to_optimizer_center)
            model.load_state_dict(torch.load(cfg.MODEL.PRETRAIN_PATH))
            optimizer.load_state_dict(torch.load(path_to_optimizer))
            center_criterion.load_state_dict(torch.load(path_to_center_param))
            optimizer_center.load_state_dict(
                torch.load(path_to_optimizer_center))
            scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                          cfg.SOLVER.GAMMA,
                                          cfg.SOLVER.WARMUP_FACTOR,
                                          cfg.SOLVER.WARMUP_ITERS,
                                          cfg.SOLVER.WARMUP_METHOD,
                                          start_epoch)
        elif cfg.MODEL.PRETRAIN_CHOICE == 'imagenet':
            start_epoch = 0
            scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS,
                                          cfg.SOLVER.GAMMA,
                                          cfg.SOLVER.WARMUP_FACTOR,
                                          cfg.SOLVER.WARMUP_ITERS,
                                          cfg.SOLVER.WARMUP_METHOD)
        else:
            print(
                'Only support pretrain_choice for imagenet and self, but got {}'
                .format(cfg.MODEL.PRETRAIN_CHOICE))

        do_train_with_center(
            cfg,
            model,
            center_criterion,
            train_loader,
            val_loader,
            optimizer,
            optimizer_center,
            scheduler,  # modify for using self trained model
            loss_func,
            num_query,
            start_epoch  # add for using self trained model
        )
    else:
        print(
            "Unsupported value for cfg.MODEL.IF_WITH_CENTER {}, only support yes or no!\n"
            .format(cfg.MODEL.IF_WITH_CENTER))
if __name__ == '__main__':

    Cfg.freeze()
    log_dir = Cfg.DATALOADER.LOG_DIR
    logger = setup_logger('pose-transfer-gan.train', log_dir)
    logger.info("Running with config:\n{}".format(Cfg))

    os.environ['CUDA_VISIBLE_DEVICES'] = Cfg.MODEL.DEVICE_ID
    cudnn.benchmark = True
    # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware.

    train_loader, val_loader = make_dataloader(Cfg)
    model_G, model_Dip, model_Dii, model_D_reid = make_model(Cfg)

    optimizerG = make_optimizer(Cfg, model_G)
    optimizerDip = make_optimizer(Cfg, model_Dip)
    optimizerDii = make_optimizer(Cfg, model_Dii)

    schedulerG = WarmupMultiStepLR(optimizerG, Cfg.SOLVER.STEPS,
                                   Cfg.SOLVER.GAMMA, Cfg.SOLVER.WARMUP_FACTOR,
                                   Cfg.SOLVER.WARMUP_EPOCHS,
                                   Cfg.SOLVER.WARMUP_METHOD)
    schedulerDip = WarmupMultiStepLR(optimizerDip, Cfg.SOLVER.STEPS,
                                     Cfg.SOLVER.GAMMA,
                                     Cfg.SOLVER.WARMUP_FACTOR,
                                     Cfg.SOLVER.WARMUP_EPOCHS,
                                     Cfg.SOLVER.WARMUP_METHOD)
    schedulerDii = WarmupMultiStepLR(optimizerDii, Cfg.SOLVER.STEPS,
                                     Cfg.SOLVER.GAMMA,
                                     Cfg.SOLVER.WARMUP_FACTOR,
Example #29
0
cfg.merge_from_file('../configs/config.yml')
cfg.freeze()



train_loader, dataset = make_data_loader(cfg, is_train=True)
val_loader, dataset_val = make_data_loader_view(cfg, is_train=True)
model = build_model(cfg).cuda()

maxs = torch.max(dataset.bbox[0], dim=0).values.cuda()+0.5
mins = torch.min(dataset.bbox[0], dim=0).values.cuda()-0.5
model.set_max_min(maxs,mins)


optimizer = make_optimizer(cfg, model)

scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
                               cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)



loss_fn = make_loss(cfg)

model, optimizer = amp.initialize(model, optimizer, opt_level="O1")



beg = time.time()
for batch in train_loader:
    beg = time.time()
    time_str = datetime.datetime.strftime(curr_time,'%Y%m%d_')
    save_dir = os.path.join(cfg['save_dir'],time_str+cfg['tag'])
    log_dir = os.path.join(cfg['log_dir'],"log_"+time_str+cfg['tag'])
    cfg['save_dir'] = save_dir
    cfg['log_dir'] = log_dir
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    if not os.path.isdir(log_dir):
        os.makedirs(log_dir)
    print("Save_dir :",save_dir)
    print("Log_dir :", log_dir)

    # import pdb; pdb.set_trace()
    model = build_model(cfg,pretrain_path=arg['load_path'])

    optimizer = make_optimizer(cfg['optimizer'],model)
    lr_scheduler = wrapper_lr_scheduler(cfg['lr_scheduler'],optimizer)

    if arg['device']: # 传入命令指定 device id
        free_device_ids = arg['device']
    else:
        free_device_ids = get_free_device_ids()

    max_num_devices = cfg['max_num_devices']
    if len(free_device_ids)>=max_num_devices:
        free_device_ids = free_device_ids[:max_num_devices]

    master_device = free_device_ids[0]
    model.cuda(master_device)
    model = nn.DataParallel(model,device_ids=free_device_ids).cuda(master_device)