Example #1
0
def generate(bot, update, args):
    '''
    Generate random message starting from words given (/with command)
    '''
    argument = ' '.join(args)
    B = Board(9)
    B.generate_puzzle(1, to_remove=30)
    draw_matrix(B.grid, name='puzzle.png')
    bot.send_photo(chat_id=update.message.chat_id,
                   photo=open('puzzle.png', 'rb'))
Example #2
0
from sklearn.preprocessing import StandardScaler
import sys
import argparse

parser = argparse.ArgumentParser(
    formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('task', help='Solve or generate')
parser.add_argument('-i', help='Image to solve')
parser.add_argument('--method', help='Which ML algorithm to use - cnn or knn')
parser.add_argument(
    '--model', help='Location of the model.json and model.h5 files for CNN')
args = parser.parse_args()

if args.task == 'generate':
    B = Board(9)
    B.generate_puzzle(1, to_remove=30)
    draw_matrix(B.grid, name='puzzle.png')
    # solution_img(B.solution(), B.grid, 'solution.png')
    sys.exit()
elif args.task == 'solve':
    img = imread(args.i, IMREAD_GRAYSCALE)
    if args.method == 'knn':
        scaler = StandardScaler()
        model = KNeighborsClassifier(n_neighbors=3)
        x_train, y_train = generate_dataset(250)
        x_train = x_train.reshape(250, 784)
        scaler.fit(x_train)
        model.fit(x_train, y_train)
    elif args.method == 'cnn':
        json_file = open(args.model + '.json', 'r')
        loaded_model_json = json_file.read()