Example #1
0
 def _decide_default(
         self, peaks: Peaks, corpus: Corpus,
         transform_handler: TransformHandler,
         **kwargs) -> Optional[Tuple[CorpusEvent, AbstractTransform]]:
     if peaks.is_empty():
         return None
     max_peak_value: float = np.max(peaks.scores)
     if max_peak_value < self.threshold:
         return None
     else:
         return super()._decide_default(peaks, corpus, transform_handler)
Example #2
0
 def _decide_default(
         self, peaks: Peaks, corpus: Corpus,
         transform_handler: TransformHandler,
         **kwargs) -> Optional[Tuple[CorpusEvent, AbstractTransform]]:
     if peaks.is_empty():
         return None
     score_cumsum: np.ndarray = np.cumsum(peaks.scores)
     max_value: float = score_cumsum[
         -1] - 1e-5  # slight offset to avoid an extremely rare case of a fp error
     output_target_score: float = float(np.random.random(1) * max_value)
     peak_idx: int = np.argwhere(score_cumsum > output_target_score)[0]
     transform_hash: int = int(peaks.transform_ids[peak_idx])
     return corpus.event_around(
         peaks.times[peak_idx]), transform_handler.get_transform(
             transform_hash)
Example #3
0
 def _scale_peaks(self, peaks: Peaks, scheduler_time: float, corpus: Corpus,
                  **kwargs):
     if peaks.is_empty():
         return peaks
     corresponding_events: List[CorpusEvent] = corpus.events_around(
         peaks.times)
     corresponding_transforms: List[AbstractTransform] = [
         self._transform_handler.get_transform(t)
         for t in np.unique(peaks.transform_ids)
     ]
     for scale_action in self.scale_actions.values():
         if scale_action.is_enabled_and_eligible():
             peaks = scale_action.scale(peaks, scheduler_time,
                                        corresponding_events,
                                        corresponding_transforms, corpus,
                                        **kwargs)
     return peaks
Example #4
0
 def _decide_default(
         self, peaks: Peaks, corpus: Corpus,
         transform_handler: TransformHandler,
         **kwargs) -> Optional[Tuple[CorpusEvent, AbstractTransform]]:
     self.logger.debug("[decide] _decide_default called.")
     if peaks.is_empty():
         return None
     max_peak_value: float = np.max(peaks.scores)
     self.logger.debug(
         f"[decide_default] Max peak value is {max_peak_value}.")
     max_peaks_idx: List[int] = np.argwhere(
         np.abs(peaks.scores - max_peak_value) < 0.001)
     peak_idx: int = random.choice(max_peaks_idx)
     transform_hash: int = int(peaks.transform_ids[peak_idx])
     return corpus.event_around(
         peaks.times[peak_idx]), transform_handler.get_transform(
             transform_hash)