Example #1
0
    def test_cartesian_product(self):
        """
        Test the function which computes the cartesian product
        of a dictionary of lists.
        This one is used to explore the complete parameter space specifeid
        in a PED file.
        :return:
        """

        def _dict_is_in_list(d, l):
            for d1 in l:
                if d1 == d:
                    return True
            return False

        INPUT = {"x": [1, 2, 3], "y": ["value1", "value2"]}
        OUTPUT = [
            {"x": 1, "y": "value1"},
            {"x": 1, "y": "value2"},
            {"x": 2, "y": "value1"},
            {"x": 2, "y": "value2"},
            {"x": 3, "y": "value1"},
            {"x": 3, "y": "value2"}
        ]
        # calculate Cartesian product
        result = compute_cartesian_product(INPUT)
        # check if results are as expected
        self.assertEqual(len(result), len(OUTPUT))
        for d in result:
            self.assertTrue(_dict_is_in_list(d, OUTPUT))
Example #2
0
    def populate(self):
        """
        Search for parameter study macros and generate
        one run configuration for each parameter combination
        to be tested.
        """
        # convert parameter macros from PED file to plain lists
        for rl in self.resource_limitations:
            rewrite_parameter_macros_to_lists(rl)
        # convert measurment points from PED file to plain lists
        for mp in self.measurement_points:
            rewrite_parameter_macros_to_lists(mp)

        # check for vnfs that need overload detection
        if hasattr(self, 'overload_detection'):
            for vnf_name in self.overload_detection:
                self.overload_vnf_list.append(vnf_name)

        # get the configuration that needs to be executed in the vnf before the test run.
        self.configuration_space_dict = self._get_configuration_space_as_dict()
        #LOG.info("configuration space:{0}".format(self.command_space_list))

        # aggregate all commands to be used in the experiment to a flat dict for further processing
        command_dict, self.vnforder_list = self._get_command_space_as_dict()
        # explore entire command space by calculating the Cartesian product over the given dict
        self.command_space_list = compute_cartesian_product(command_dict)
        #LOG.info("command space:{0}".format(self.command_space_list))

        # aggregate all parameters to used in the experiment to a flat dict for further processing
        resource_dict = self._get_resource_space_as_dict()
        # print(parameter_dict)
        # explore entire parameter space by calculating the Cartesian product over the given dict
        self.resource_space_list = compute_cartesian_product(resource_dict)

        # create a run configuration object for each calculated configuration to test
        for i in range(0, len(self.resource_space_list)):
            self.run_configurations.append(
                RunConfiguration(i, self.resource_space_list[i]))
        LOG.info(
            "Populated experiment specifications: %r with %d configurations to test."
            % (self.name, len(self.run_configurations)))
Example #3
0
 def populate(self):
     """
     Search for parameter study macros and generate
     one run configuration for each parameter combination
     to be tested.
     """
     # convert parameter macros from PED file to plain lists
     for rl in self.resource_limitations:
         rewrite_parameter_macros_to_lists(rl)
     # aggregate all parameters to used in the experiment to a flat dict for further processing
     parameter_dict = self._get_configuration_space_as_dict()
     # print(parameter_dict)
     # explore entire parameter space by calculating the Cartesian product over the given dict
     parameter_space_list = compute_cartesian_product(parameter_dict)
     # create a run configuration object for each calculated configuration to test
     for i in range(0, len(parameter_space_list)):
         self.run_configurations.append(RunConfiguration(i, parameter_space_list[i]))
     LOG.info("Populated experiment specifications: %r with %d configurations to test." % (self.name, len(self.run_configurations)))
Example #4
0
    def populate(self):
        """
        Search for parameter study macros and generate
        one run configuration for each parameter combination
        to be tested.
        """
        # convert parameter macros from PED file to plain lists
        for rl in self.resource_limitations:
            rewrite_parameter_macros_to_lists(rl)
        # convert measurment points from PED file to plain lists
        for mp in self.measurement_points:
            rewrite_parameter_macros_to_lists(mp)

        ######## IMEC
        # check for vnfs that need overload detection (imec mode)
        if hasattr(self, 'overload_detection') :
            for vnf_name in self.overload_detection:
                self.overload_vnf_list.append(vnf_name)
        # gather all configuration commands per VNF that need to be executed once before all tests start
        self.pre_configuration = self._get_pre_configuration_as_dict()

        ######## UPB
        # generate a single flat dict containing all the parameter study lists defined in the PED
        # this includes: header parameters (repetitions), measurement point commands (all), and
        # function resource limitations
        configuration_dict = dict()
        configuration_dict.update(self._get_experiment_header_space_as_dict())
        configuration_dict.update(self._get_function_resource_space_as_dict())
        configuration_dict.update(self._get_mp_space_as_dict())
        LOG.debug("configuration space:{0}".format(configuration_dict))
        # explore entire parameter space by calculating the Cartesian product over the given dict
        configuration_space_list = compute_cartesian_product(configuration_dict)  # imec backward compatibility
        self.configuration_space_list = configuration_space_list
        # create a experiment configuration objects for each calculated configuration to test
        for c in configuration_space_list:
            rc = ExperimentConfiguration(self, c)
            self.experiment_configurations.append(rc)
        LOG.info("Populated experiment specification: {} with {} configurations to be executed.".format(
            self.name,
            len(self.experiment_configurations)))
Example #5
0
    def test_cartesian_product(self):
        """
        Test the function which computes the cartesian product
        of a dictionary of lists.
        This one is used to explore the complete parameter space specifeid
        in a PED file.
        :return:
        """
        def _dict_is_in_list(d, l):
            for d1 in l:
                if d1 == d:
                    return True
            return False

        INPUT = {"x": [1, 2, 3], "y": ["value1", "value2"]}
        OUTPUT = [{
            "x": 1,
            "y": "value1"
        }, {
            "x": 1,
            "y": "value2"
        }, {
            "x": 2,
            "y": "value1"
        }, {
            "x": 2,
            "y": "value2"
        }, {
            "x": 3,
            "y": "value1"
        }, {
            "x": 3,
            "y": "value2"
        }]
        # calculate Cartesian product
        result = compute_cartesian_product(INPUT)
        # check if results are as expected
        self.assertEqual(len(result), len(OUTPUT))
        for d in result:
            self.assertTrue(_dict_is_in_list(d, OUTPUT))