Example #1
0
    def __init__(self, corpus, config):
        super(Seq2Seq, self).__init__()

        self.src_vocab_size = corpus.SRC.vocab_size
        self.tgt_vocab_size = corpus.TGT.vocab_size

        self.embed_size = config.embed_size
        self.hidden_size = config.hidden_size
        self.padding_idx = corpus.padding_idx
        self.num_layers = config.num_layers
        self.bidirectional = config.bidirectional
        self.attn_mode = config.attn_mode
        self.attn_hidden_size = config.attn_hidden_size
        self.with_bridge = config.with_bridge
        self.tie_embedding = config.tie_embedding
        self.dropout = config.dropout
        self.use_gpu = config.use_gpu

        enc_embedder = Embedder(num_embeddings=self.src_vocab_size,
                                embedding_dim=self.embed_size,
                                padding_idx=self.padding_idx)

        self.encoder = RNNEncoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  num_layers=self.num_layers,
                                  bidirectional=self.bidirectional,
                                  dropout=self.dropout)

        if self.with_bridge:
            self.bridge = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )

        if self.tie_embedding:
            assert self.src_vocab_size == self.tgt_vocab_size
            dec_embedder = enc_embedder
        else:
            dec_embedder = Embedder(num_embeddings=self.tgt_vocab_size,
                                    embedding_dim=self.embed_size,
                                    padding_idx=self.padding_idx)

        self.decoder = RNNDecoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  output_size=self.tgt_vocab_size,
                                  embedder=dec_embedder,
                                  num_layers=self.num_layers,
                                  attn_mode=self.attn_mode,
                                  attn_hidden_size=self.attn_hidden_size,
                                  memory_size=self.hidden_size,
                                  feature_size=None,
                                  dropout=self.dropout)

        # Loss Definition
        if self.padding_idx is not None:
            weight = torch.ones(self.tgt_vocab_size)
            weight[self.padding_idx] = 0
        else:
            weight = None
        self.nll_loss = NLLLoss(weight=weight,
                                ignore_index=self.padding_idx,
                                reduction='mean')

        if self.use_gpu:
            self.cuda()
Example #2
0
class Seq2Seq(BaseModel):
    def __init__(self,
                 src_vocab_size,
                 tgt_vocab_size,
                 embed_size,
                 hidden_size,
                 padding_idx=None,
                 num_layers=1,
                 bidirectional=True,
                 attn_mode="mlp",
                 attn_hidden_size=None,
                 with_bridge=False,
                 tie_embedding=False,
                 dropout=0.0,
                 use_gpu=False):
        super(Seq2Seq, self).__init__()

        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.padding_idx = padding_idx
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.attn_mode = attn_mode
        self.attn_hidden_size = attn_hidden_size
        self.with_bridge = with_bridge
        self.tie_embedding = tie_embedding
        self.dropout = dropout
        self.use_gpu = use_gpu

        enc_embedder = Embedder(num_embeddings=self.src_vocab_size,
                                embedding_dim=self.embed_size,
                                padding_idx=self.padding_idx)

        self.encoder = RNNEncoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  num_layers=self.num_layers,
                                  bidirectional=self.bidirectional,
                                  dropout=self.dropout)

        if self.with_bridge:
            self.bridge = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )

        if self.tie_embedding:
            assert self.src_vocab_size == self.tgt_vocab_size
            dec_embedder = enc_embedder
        else:
            dec_embedder = Embedder(num_embeddings=self.tgt_vocab_size,
                                    embedding_dim=self.embed_size,
                                    padding_idx=self.padding_idx)

        self.decoder = RNNDecoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  output_size=self.tgt_vocab_size,
                                  embedder=dec_embedder,
                                  num_layers=self.num_layers,
                                  attn_mode=self.attn_mode,
                                  attn_hidden_size=self.attn_hidden_size,
                                  memory_size=self.hidden_size,
                                  feature_size=None,
                                  dropout=self.dropout)

        # Loss Definition
        if self.padding_idx is not None:
            weight = torch.ones(self.tgt_vocab_size)
            weight[self.padding_idx] = 0
        else:
            weight = None
        self.nll_loss = NLLLoss(weight=weight,
                                ignore_index=self.padding_idx,
                                reduction='mean')

        if self.use_gpu:
            self.cuda()

    def encode(self, inputs, hidden=None):

        outputs = Pack()
        enc_inputs = _, lengths = inputs.src[0][:, 1:-1], inputs.src[1] - 2

        enc_outputs, enc_hidden = self.encoder(enc_inputs, hidden)

        if self.with_bridge:
            enc_hidden = self.bridge(enc_hidden)

        dec_init_state = self.decoder.initialize_state(
            hidden=enc_hidden,
            attn_memory=enc_outputs if self.attn_mode else None,
            memory_lengths=lengths if self.attn_mode else None)
        return outputs, dec_init_state

    def decode(self, input, state):

        log_prob, state, output = self.decoder.decode(input, state)
        return log_prob, state, output

    def forward(self, enc_inputs, dec_inputs, hidden=None):

        outputs, dec_init_state = self.encode(enc_inputs, hidden)
        log_probs, _ = self.decoder(dec_inputs, dec_init_state)
        outputs.add(logits=log_probs)
        return outputs

    def collect_metrics(self, outputs, target):

        num_samples = target.size(0)
        metrics = Pack(num_samples=num_samples)
        loss = 0

        logits = outputs.logits
        nll = self.nll_loss(logits, target)
        num_words = target.ne(self.padding_idx).sum().item()
        acc = accuracy(logits, target, padding_idx=self.padding_idx)
        metrics.add(nll=(nll, num_words), acc=acc)
        loss += nll

        metrics.add(loss=loss)
        return metrics

    def iterate(self,
                inputs,
                optimizer=None,
                grad_clip=None,
                is_training=True,
                epoch=-1):

        enc_inputs = inputs
        dec_inputs = inputs.tgt[0][:, :-1], inputs.tgt[1] - 1
        target = inputs.tgt[0][:, 1:]

        outputs = self.forward(enc_inputs, dec_inputs)
        metrics = self.collect_metrics(outputs, target)

        loss = metrics.loss
        if torch.isnan(loss):
            raise ValueError("nan loss encountered")

        if is_training:
            assert optimizer is not None
            optimizer.zero_grad()
            loss.backward()
            if grad_clip is not None and grad_clip > 0:
                clip_grad_norm_(parameters=self.parameters(),
                                max_norm=grad_clip)
            optimizer.step()
        return metrics
Example #3
0
    def __init__(self,
                 src_vocab_size,
                 tgt_vocab_size,
                 embed_size,
                 hidden_size,
                 padding_idx=None,
                 num_layers=1,
                 bidirectional=True,
                 attn_mode="mlp",
                 attn_hidden_size=None,
                 with_bridge=False,
                 tie_embedding=False,
                 dropout=0.0,
                 use_gpu=False,
                 copy=False):
        super(Seq2Seq, self).__init__()

        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.padding_idx = padding_idx
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.attn_mode = attn_mode
        self.attn_hidden_size = attn_hidden_size
        self.with_bridge = with_bridge
        self.tie_embedding = tie_embedding
        self.dropout = dropout
        self.use_gpu = use_gpu
        self.copy = copy

        enc_embedder = Embedder(num_embeddings=self.src_vocab_size,
                                embedding_dim=self.embed_size,
                                padding_idx=self.padding_idx)

        self.encoder = RNNEncoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  num_layers=self.num_layers,
                                  bidirectional=self.bidirectional,
                                  dropout=self.dropout)

        if self.with_bridge:
            self.bridge = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )

        if self.tie_embedding:
            assert self.src_vocab_size == self.tgt_vocab_size
            dec_embedder = enc_embedder
        else:
            dec_embedder = Embedder(num_embeddings=self.tgt_vocab_size,
                                    embedding_dim=self.embed_size,
                                    padding_idx=self.padding_idx)

        self.decoder = RNNDecoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  output_size=self.tgt_vocab_size,
                                  embedder=dec_embedder,
                                  num_layers=self.num_layers,
                                  attn_mode=self.attn_mode,
                                  attn_hidden_size=self.attn_hidden_size,
                                  memory_size=self.hidden_size,
                                  feature_size=None,
                                  dropout=self.dropout)

        # Loss Definition
        if self.padding_idx is not None:
            weight = torch.ones(self.tgt_vocab_size)
            weight[self.padding_idx] = 0
        else:
            weight = None
        self.nll_loss = NLLLoss(weight=weight,
                                ignore_index=self.padding_idx,
                                reduction='mean')

        if self.use_gpu:
            self.cuda()
Example #4
0
class Entity_Seq2Seq(BaseModel):
    """
    Seq2Seq
    """
    def __init__(self,
                 src_vocab_size,
                 embed_size,
                 hidden_size,
                 padding_idx=None,
                 num_layers=1,
                 bidirectional=True,
                 attn_mode="mlp",
                 with_bridge=False,
                 dropout=0.0,
                 use_gpu=False,
                 pretrain_epoch=5):
        super(Entity_Seq2Seq, self).__init__()

        self.src_vocab_size = src_vocab_size
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.padding_idx = padding_idx
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.attn_mode = attn_mode
        self.with_bridge = with_bridge
        self.dropout = dropout
        self.use_gpu = use_gpu
        self.pretrain_epoch = pretrain_epoch

        enc_embedder = Embedder(num_embeddings=self.src_vocab_size,
                                embedding_dim=self.embed_size,
                                padding_idx=self.padding_idx)

        self.encoder = RNNEncoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  num_layers=self.num_layers,
                                  bidirectional=self.bidirectional,
                                  dropout=self.dropout)

        if self.with_bridge:
            self.bridge1 = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )
            self.bridge2 = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )

        self.decoder = RNNDecoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  num_layers=self.num_layers,
                                  attn_mode=self.attn_mode,
                                  memory_size=self.hidden_size,
                                  dropout=self.dropout)

        # Loss Definition
        if self.use_gpu:
            self.cuda()

    def encode(self, inputs, hidden=None):
        """
        encode
        """
        outputs = Pack()
        enc_inputs, lengths = inputs.num_src

        enc_outputs, enc_hidden = self.encoder(enc_inputs, hidden)

        if self.with_bridge:
            enc_hidden[0] = self.bridge1(enc_hidden[0])
            enc_hidden[1] = self.bridge1(enc_hidden[1])

        layer, batch_size, dim = enc_hidden[0].size()
        dec_init_state = self.decoder.initialize_state(
            hidden=enc_hidden,
            input_feed=enc_hidden[0].data.new(batch_size,dim).zero_() \
                              .unsqueeze(1),
            attn_memory=enc_outputs if self.attn_mode else None,
            mask= inputs.mask[0])
        return outputs, dec_init_state

    def decode(self, input, state):
        """
        decode
        step by step
        """
        log_prob, state, output = self.decoder.decode(input, state)
        return log_prob, state, output

    def forward(self, enc_inputs, dec_inputs, hidden=None):
        """
        forward

        """
        outputs, dec_init_state = self.encode(enc_inputs, hidden)
        log_probs, state, out_copy = self.decoder(dec_inputs, dec_init_state)
        outputs.add(logits=log_probs)
        outputs.add(out_copy=out_copy)
        return outputs

    def collect_metrics(self, outputs, target, emo_target):
        """
        collect_metrics
        """
        num_samples = target[0].size(0)
        num_words = target[1].sum().item()
        metrics = Pack(num_samples=num_samples)
        target_len = target[1]
        mask = sequence_mask(target_len)
        mask = mask.float()
        # logits = outputs.logits
        # nll = self.nll_loss(logits, target)
        out_copy = outputs.out_copy
        #  out_copy  batch x max_len x src
        target_loss = out_copy.gather(2, target[0].unsqueeze(-1)).squeeze(-1)
        target_loss = target_loss * mask
        target_loss += 1e-15
        target_loss = target_loss.log()
        loss = -((target_loss.sum()) / num_words)

        out_emo = outputs.logits  #  batch x  max_len x  dim
        batch_size, max_len, class_num = out_emo.size()
        # out_emo=out_emo.view(batch_size*max_len, class_num)
        # emo_target=emo_target.view(-1)
        target_emo_loss = out_emo.gather(
            2, emo_target[0].unsqueeze(-1)).squeeze(-1)
        target_len -= 1
        mask_ = sequence_mask(target_len)
        mask_ = mask_.float()
        new_mask = mask.data.new(batch_size, max_len).zero_()
        # print(mask.size())
        # print(new_mask.size())
        new_mask[:, :max_len - 1] = mask_

        target_emo_loss = target_emo_loss * new_mask
        target_emo_loss += 1e-15
        target_emo_loss = target_emo_loss.log()
        emo_loss = -((target_emo_loss.sum()) / num_words)

        metrics.add(loss=loss)
        metrics.add(emo_loss=emo_loss)
        #  这里,我们将只计算
        acc = accuracy(out_copy, target[0], mask=mask)
        metrics.add(acc=acc)
        return metrics

    def iterate(self,
                inputs,
                optimizer=None,
                grad_clip=None,
                is_training=True,
                epoch=-1):
        """
        iterate
        """
        enc_inputs = inputs
        dec_inputs = inputs.num_tgt_input
        target = inputs.tgt_output
        emo_target = inputs.tgt_emo

        outputs = self.forward(enc_inputs, dec_inputs)
        metrics = self.collect_metrics(outputs, target, emo_target)

        loss = metrics.loss
        if epoch > self.pretrain_epoch:
            loss += metrics.emo_loss
        if torch.isnan(loss):
            raise ValueError("nan loss encountered")

        if is_training:
            assert optimizer is not None
            optimizer.zero_grad()
            loss.backward()
            if grad_clip is not None and grad_clip > 0:
                clip_grad_norm_(parameters=self.parameters(),
                                max_norm=grad_clip)
            optimizer.step()
        return metrics
    def __init__(self,
                 src_vocab_size,
                 embed_size,
                 hidden_size,
                 padding_idx=None,
                 num_layers=1,
                 bidirectional=True,
                 attn_mode="mlp",
                 with_bridge=False,
                 dropout=0.0,
                 use_gpu=False,
                 pretrain_epoch=5,
                 batch_size=64):
        super(Entity_Seq2Seq_elmo, self).__init__()

        self.src_vocab_size = src_vocab_size
        self.embed_size = embed_size
        self.hidden_size = hidden_size
        self.padding_idx = padding_idx
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.attn_mode = attn_mode
        self.with_bridge = with_bridge
        self.dropout = dropout
        self.use_gpu = use_gpu
        self.pretrain_epoch = pretrain_epoch
        self.batch_size = batch_size
        enc_embedder = Embedder(num_embeddings=self.src_vocab_size,
                                embedding_dim=self.embed_size,
                                padding_idx=self.padding_idx)
        model_file = './extend/zhs.model'
        elmo_embedder = elmo_Embedder(model_file, batch_size=self.batch_size)

        self.encoder = RNNEncoder(input_size=self.embed_size + 1024,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  elmo_embedder=elmo_embedder,
                                  num_layers=self.num_layers,
                                  bidirectional=self.bidirectional,
                                  dropout=self.dropout)

        if self.with_bridge:
            self.bridge1 = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )
            self.bridge2 = nn.Sequential(
                nn.Linear(self.hidden_size, self.hidden_size),
                nn.Tanh(),
            )

        self.decoder = RNNDecoder(input_size=self.embed_size,
                                  hidden_size=self.hidden_size,
                                  embedder=enc_embedder,
                                  num_layers=self.num_layers,
                                  attn_mode=self.attn_mode,
                                  memory_size=self.hidden_size,
                                  dropout=self.dropout)

        # Loss Definition
        if self.use_gpu:
            self.cuda()
Example #6
0
    def __init__(self,
                 vocab_size,
                 embed_units,
                 hidden_size,
                 padding_idx=None,
                 num_layers=1,
                 max_hop=3,
                 bidirectional=True,
                 attn_mode='mlp',
                 dropout=0.0,
                 use_gpu=False):
        super(MemNet, self).__init__()

        self.vocab_size = vocab_size
        self.embed_units = embed_units
        self.padding_idx = padding_idx

        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.max_hop = max_hop
        self.bidirectional = bidirectional
        self.dropout = dropout

        self.attn_mode = attn_mode
        self.use_gpu = use_gpu

        enc_embedder = Embedder(num_embeddings=self.vocab_size,
                                embedding_dim=self.embed_units,
                                padding_idx=self.padding_idx)
        dec_embedder = enc_embedder

        self.rnn_encoder = RNNEncoder(input_size=self.embed_units,
                                      hidden_size=self.hidden_size,
                                      embedder=enc_embedder,
                                      num_layers=self.num_layers,
                                      bidirectional=self.bidirectional,
                                      dropout=self.dropout)

        self.mem_encoder = EncoderMemNN(vocab=self.vocab_size,
                                        hidden_size=self.hidden_size,
                                        hop=self.max_hop,
                                        attn_mode='general',
                                        padding_idx=self.padding_idx)

        self.decoder = RNNDecoder(input_size=self.embed_units,
                                  hidden_size=self.hidden_size,
                                  output_size=self.vocab_size,
                                  embedder=dec_embedder,
                                  attn_mode=self.attn_mode,
                                  attn_hidden_size=self.hidden_size,
                                  memory_size=self.hidden_size,
                                  feature_size=None,
                                  dropout=self.dropout)

        self.softmax = nn.Softmax(dim=-1)

        if self.padding_idx is not None:
            self.weight = torch.ones(self.vocab_size)
            self.weight[self.padding_idx] = 0
        else:
            self.weight = None
        self.nll_loss = NLLLoss(weight=self.weight,
                                ignore_index=self.padding_idx,
                                reduction='mean')

        if self.use_gpu:
            self.cuda()
            self.weight = self.weight.cuda()
Example #7
0
class MemNet(BaseModel):
    """

    """
    def __init__(self,
                 vocab_size,
                 embed_units,
                 hidden_size,
                 padding_idx=None,
                 num_layers=1,
                 max_hop=3,
                 bidirectional=True,
                 attn_mode='mlp',
                 dropout=0.0,
                 use_gpu=False):
        super(MemNet, self).__init__()

        self.vocab_size = vocab_size
        self.embed_units = embed_units
        self.padding_idx = padding_idx

        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.max_hop = max_hop
        self.bidirectional = bidirectional
        self.dropout = dropout

        self.attn_mode = attn_mode
        self.use_gpu = use_gpu

        enc_embedder = Embedder(num_embeddings=self.vocab_size,
                                embedding_dim=self.embed_units,
                                padding_idx=self.padding_idx)
        dec_embedder = enc_embedder

        self.rnn_encoder = RNNEncoder(input_size=self.embed_units,
                                      hidden_size=self.hidden_size,
                                      embedder=enc_embedder,
                                      num_layers=self.num_layers,
                                      bidirectional=self.bidirectional,
                                      dropout=self.dropout)

        self.mem_encoder = EncoderMemNN(vocab=self.vocab_size,
                                        hidden_size=self.hidden_size,
                                        hop=self.max_hop,
                                        attn_mode='general',
                                        padding_idx=self.padding_idx)

        self.decoder = RNNDecoder(input_size=self.embed_units,
                                  hidden_size=self.hidden_size,
                                  output_size=self.vocab_size,
                                  embedder=dec_embedder,
                                  attn_mode=self.attn_mode,
                                  attn_hidden_size=self.hidden_size,
                                  memory_size=self.hidden_size,
                                  feature_size=None,
                                  dropout=self.dropout)

        self.softmax = nn.Softmax(dim=-1)

        if self.padding_idx is not None:
            self.weight = torch.ones(self.vocab_size)
            self.weight[self.padding_idx] = 0
        else:
            self.weight = None
        self.nll_loss = NLLLoss(weight=self.weight,
                                ignore_index=self.padding_idx,
                                reduction='mean')

        if self.use_gpu:
            self.cuda()
            self.weight = self.weight.cuda()

    def encode(self, inputs, hidden=None):
        outputs = Pack()
        enc_inputs = _, lengths = inputs.src[0][:, 1:-1], inputs.src[1] - 2
        enc_outputs, enc_hidden = self.rnn_encoder(enc_inputs, hidden)

        # knowledge
        batch_size, sent_num, sent = inputs.cue[0].size()
        tmp_len = inputs.cue[1]
        tmp_len[tmp_len > 0] -= 2
        cue_inputs = inputs.cue[0][:, :, 1:-1], tmp_len

        u = self.mem_encoder(cue_inputs, enc_hidden[-1])

        dec_init_state = self.decoder.initialize_state(
            hidden=u.unsqueeze(0),
            attn_memory=enc_outputs if self.attn_mode else None,
            memory_lengths=lengths if self.attn_mode else None)

        return outputs, dec_init_state

    def decode(self, input, state):
        """
        decode
        """
        log_prob, state, output = self.decoder.decode(input, state)
        return log_prob, state, output

    def forward(self, enc_inputs, dec_inputs, hidden=None):
        """
        forward
        """
        outputs, dec_init_state = self.encode(enc_inputs, hidden)
        log_probs, _ = self.decoder(dec_inputs, dec_init_state)
        outputs.add(logits=log_probs)
        return outputs

    def collect_metrics(self, outputs, target):
        """
        collect_metrics
        """
        num_samples = target.size(0)
        metrics = Pack(num_samples=num_samples)
        loss = 0

        logits = outputs.logits
        scores = -self.nll_loss(logits, target, reduction=False)
        nll = self.nll_loss(logits, target)
        num_words = target.ne(self.padding_idx).sum().item()
        acc = accuracy(logits, target, padding_idx=self.padding_idx)
        metrics.add(nll=(nll, num_words), acc=acc)
        loss += nll

        metrics.add(loss=loss)
        return metrics, scores

    def iterate(self,
                inputs,
                optimizer=None,
                grad_clip=None,
                is_training=True,
                epoch=-1):
        """
        iterate
        """
        enc_inputs = inputs
        dec_inputs = inputs.tgt[0][:, :-1], inputs.tgt[1] - 1
        target = inputs.tgt[0][:, 1:]

        outputs = self.forward(enc_inputs, dec_inputs)
        metrics, scores = self.collect_metrics(outputs, target)

        loss = metrics.loss
        if torch.isnan(loss):
            raise ValueError("nan loss encountered")

        if is_training:
            assert optimizer is not None
            optimizer.zero_grad()
            loss.backward()
            if grad_clip is not None and grad_clip > 0:
                clip_grad_norm_(parameters=self.parameters(),
                                max_norm=grad_clip)
            optimizer.step()
        return metrics, scores