Example #1
0
    def export_new_dataset(self, map, tile_size, step, basename):

        # create a black canvas of the same size of your map
        w = map.width()
        h = map.height()

        labelimg = QImage(w, h, QImage.Format_RGB32)
        labelimg.fill(qRgb(0, 0, 0))

        # CREATE LABEL IMAGE
        for i, blob in enumerate(self.seg_blobs):

            if blob.qpath_gitem.isVisible():

                if blob.class_color == "Empty":
                    rgb = qRgb(255, 255, 255)
                else:
                    rgb = qRgb(blob.class_color[0], blob.class_color[1],
                               blob.class_color[2])

                blob_mask = blob.getMask()
                for x in range(blob_mask.shape[1]):
                    for y in range(blob_mask.shape[0]):

                        if blob_mask[y, x] == 1:
                            labelimg.setPixel(x + blob.bbox[1],
                                              y + blob.bbox[0], rgb)

        tile_cols = int((w - tile_size) / step)
        tile_rows = int((h - tile_size) / step)

        deltaW = int(tile_size / 2) + 1
        deltaH = int(tile_size / 2) + 1

        for row in range(tile_rows):
            for col in range(tile_cols):

                top = deltaH + row * step
                left = deltaW + col * step
                cropimg = utils.cropQImage(map,
                                           [top, left, tile_size, tile_size])
                croplabel = utils.cropQImage(labelimg,
                                             [top, left, tile_size, tile_size])

                filenameRGB = basename + "_RGB_" + str.format(
                    "{0:02d}", (row)) + "_" + str.format("{0:02d}",
                                                         (col)) + ".png"
                filenameLabel = basename + "_L_" + str.format(
                    "{0:02d}", (row)) + "_" + str.format("{0:02d}",
                                                         (col)) + ".png"

                cropimg.save(filenameRGB)
                croplabel.save(filenameLabel)
Example #2
0
    def splitBlob(self, map, blob, seeds):

        seeds = np.asarray(seeds)
        seeds = seeds.astype(int)
        mask = blob.getMask()
        box = blob.bbox
        cropimg = utils.cropQImage(map, box)
        cropimgnp = rgb2gray(utils.qimageToNumpyArray(cropimg))

        edges = sobel(cropimgnp)

        # x,y
        seeds_matrix = np.zeros_like(mask)

        size = 40
        #
        for i in range(0, seeds.shape[0]):
            #y,x
            seeds_matrix[seeds[i, 1] - box[0] - (size - 1):seeds[i, 1] -
                         box[0] + (size - 1), seeds[i, 0] - box[1] -
                         (size - 1):seeds[i, 0] - box[1] + (size - 1)] = 1

        distance = ndi.distance_transform_edt(mask)
        # distance = ndi.distance_transform_edt(cropimg)
        seeds_matrix = seeds_matrix > 0.5
        markers = ndi.label(seeds_matrix)[0]
        # labels = watershed(-distance, markers, mask=mask)
        labels = watershed((-distance + 100 * edges) / 2, markers, mask=mask)
        created_blobs = []
        for region in measure.regionprops(labels):
            b = Blob(region, box[1], box[0], self.progressive_id)
            self.progressive_id += 1
            b.class_color = blob.class_color
            b.class_name = blob.class_name
            created_blobs.append(b)

        return created_blobs
Example #3
0
    def export_tiles(self, basename, tilename, labels_info):
        """
		Exports the tiles INSIDE the given areas (val_area and test_area are stored as (top, left, width, height))
		The training tiles are the ones of the entire map minus the ones inside the test validation and test area.
		"""

        ##### VALIDATION AREA

        basenameVim = os.path.join(basename,
                                   os.path.join("validation", "images"))
        try:
            os.makedirs(basenameVim)
        except:
            pass

        basenameVlab = os.path.join(basename,
                                    os.path.join("validation", "labels"))
        try:
            os.makedirs(basenameVlab)
        except:
            pass

        half_tile_size = self.tile_size / 2

        for i, sample in enumerate(self.validation_tiles):

            cx = sample[0]
            cy = sample[1]
            top = cy - half_tile_size
            left = cx - half_tile_size
            cropimg = utils.cropQImage(
                self.orthoimage, [top, left, self.tile_size, self.tile_size])
            croplabel = utils.cropQImage(
                self.label_image, [top, left, self.tile_size, self.tile_size])

            filenameRGB = os.path.join(
                basenameVim, tilename + str.format("_{0:04d}", (i)) + ".png")
            filenameLabel = os.path.join(
                basenameVlab, tilename + str.format("_{0:04d}", (i)) + ".png")

            cropimg.save(filenameRGB)
            croplabel.save(filenameLabel)

        ##### TEST AREA

        basenameTestIm = os.path.join(basename, os.path.join("test", "images"))
        try:
            os.makedirs(basenameTestIm)
        except:
            pass

        basenameTestLab = os.path.join(basename,
                                       os.path.join("test", "labels"))
        try:
            os.makedirs(basenameTestLab)
        except:
            pass

        for i, sample in enumerate(self.test_tiles):

            cx = sample[0]
            cy = sample[1]
            top = cy - half_tile_size
            left = cx - half_tile_size

            cropimg = utils.cropQImage(
                self.orthoimage, [top, left, self.tile_size, self.tile_size])
            croplabel = utils.cropQImage(
                self.label_image, [top, left, self.tile_size, self.tile_size])

            filenameRGB = os.path.join(
                basenameTestIm, tilename + str.format("_{0:04d}",
                                                      (i)) + ".png")
            filenameLabel = os.path.join(
                basenameTestLab, tilename + str.format("_{0:04d}",
                                                       (i)) + ".png")

            cropimg.save(filenameRGB)
            croplabel.save(filenameLabel)

        ##### TRAINING AREA = ENTIRE MAP / (VALIDATION AREA U TEST_AREA)

        basenameTrainIm = os.path.join(basename,
                                       os.path.join("training", "images"))
        try:
            os.makedirs(basenameTrainIm)
        except:
            pass

        basenameTrainLab = os.path.join(basename,
                                        os.path.join("training", "labels"))
        try:
            os.makedirs(basenameTrainLab)
        except:
            pass

        for i, sample in enumerate(self.training_tiles):

            cx = sample[0]
            cy = sample[1]
            top = cy - half_tile_size
            left = cx - half_tile_size

            cropimg = utils.cropQImage(
                self.orthoimage, [top, left, self.tile_size, self.tile_size])
            croplabel = utils.cropQImage(
                self.label_image, [top, left, self.tile_size, self.tile_size])

            filenameRGB = os.path.join(
                basenameTrainIm, tilename + str.format("_{0:04d}",
                                                       (i)) + ".png")
            filenameLabel = os.path.join(
                basenameTrainLab, tilename + str.format("_{0:04d}",
                                                        (i)) + ".png")

            cropimg.save(filenameRGB)
            croplabel.save(filenameLabel)
Example #4
0
    def export_new_dataset(self, map, tile_size, step, output_folder):

        # if the dataset folder already had DL subfolder than delete them

        output_folder_training = os.path.join(output_folder, "training")
        output_folder_validation = os.path.join(output_folder, "validation")
        output_folder_test = os.path.join(output_folder, "test")

        if os.path.exists(output_folder_training):
            shutil.rmtree(output_folder_training, ignore_errors=True)
        if os.path.exists(output_folder_validation):
            shutil.rmtree(output_folder_validation, ignore_errors=True)
        if os.path.exists(output_folder_test):
            shutil.rmtree(output_folder_test, ignore_errors=True)

        # create DL folders

        os.mkdir(output_folder_training)
        output_images_training = os.path.join(output_folder_training, "images")
        output_labels_training = os.path.join(output_folder_training, "labels")
        os.mkdir(output_images_training)
        os.mkdir(output_labels_training)

        os.mkdir(output_folder_validation)
        output_images_validation = os.path.join(output_folder_validation,
                                                "images")
        output_labels_validation = os.path.join(output_folder_validation,
                                                "labels")
        os.mkdir(output_images_validation)
        os.mkdir(output_labels_validation)

        os.mkdir(output_folder_test)
        output_images_test = os.path.join(output_folder_test, "images")
        output_labels_test = os.path.join(output_folder_test, "labels")
        os.mkdir(output_images_test)
        os.mkdir(output_labels_test)

        ##### CREATE LABEL IMAGE

        # create a black canvas of the same size of your map
        w = map.width()
        h = map.height()

        labelimg = QImage(w, h, QImage.Format_RGB32)
        labelimg.fill(qRgb(0, 0, 0))

        painter = QPainter(labelimg)

        for i, blob in enumerate(self.seg_blobs):
            if blob.qpath_gitem.isVisible():
                if blob.qpath_gitem.isVisible():
                    if blob.class_name == "Empty":
                        rgb = qRgb(255, 255, 255)
                    else:
                        class_color = self.labels_info[blob.class_name]
                        rgb = qRgb(class_color[0], class_color[1],
                                   class_color[2])

                    painter.setBrush(QBrush(QColor(rgb)))
                    painter.drawPath(blob.qpath_gitem.path())

        painter.end()

        ##### TILING

        h1 = h * 0.65
        h2 = h * 0.85

        # tiles within the height [0..h1] are used for the training
        # tiles within the height [h1..h2] are used for the validation
        # the other tiles are used for the test

        tile_cols = int((w + tile_size) / step)
        tile_rows = int((h + tile_size) / step)

        deltaW = int(tile_size / 2) + 1
        deltaH = int(tile_size / 2) + 1

        for row in range(tile_rows):
            for col in range(tile_cols):

                top = row * step - deltaH
                left = col * step - deltaW
                cropimg = utils.cropQImage(map,
                                           [top, left, tile_size, tile_size])
                croplabel = utils.cropQImage(labelimg,
                                             [top, left, tile_size, tile_size])

                filenameRGB = ""

                if top + tile_size < h1 - step:

                    filenameRGB = os.path.join(
                        output_images_training,
                        "tile_" + str.format("{0:02d}", (row)) + "_" +
                        str.format("{0:02d}", (col)) + ".png")
                    filenameLabel = os.path.join(
                        output_labels_training,
                        "tile_" + str.format("{0:02d}", (row)) + "_" +
                        str.format("{0:02d}", (col)) + ".png")

                elif top > h2 + step:

                    filenameRGB = os.path.join(
                        output_images_test,
                        "tile_" + str.format("{0:02d}", (row)) + "_" +
                        str.format("{0:02d}", (col)) + ".png")
                    filenameLabel = os.path.join(
                        output_labels_test,
                        "tile_" + str.format("{0:02d}", (row)) + "_" +
                        str.format("{0:02d}", (col)) + ".png")

                elif top + tile_size >= h1 + step and top <= h2 - step:

                    filenameRGB = os.path.join(
                        output_images_validation,
                        "tile_" + str.format("{0:02d}", (row)) + "_" +
                        str.format("{0:02d}", (col)) + ".png")
                    filenameLabel = os.path.join(
                        output_labels_validation,
                        "tile_" + str.format("{0:02d}", (row)) + "_" +
                        str.format("{0:02d}", (col)) + ".png")

                print(filenameRGB)
                print(filenameLabel)

                if filenameRGB != "":
                    cropimg.save(filenameRGB)
                    croplabel.save(filenameLabel)
Example #5
0
    def __init__(self, map, annotations, blob, x, y, parent=None):
        super(QtCrackWidget, self).__init__(parent)

        self.setStyleSheet("background-color: rgb(60,60,65); color: white")

        self.qimg_cropped = utils.cropQImage(map, blob.bbox)
        arr = utils.qimageToNumpyArray(self.qimg_cropped)
        self.input_arr = rgb2gray(arr) * 255
        self.tolerance = 20
        self.annotations = annotations
        self.blob = blob
        self.xmap = x
        self.ymap = y
        self.qimg_crack = QImage(self.qimg_cropped.width(),
                                 self.qimg_cropped.height(),
                                 QImage.Format_RGB32)
        self.qimg_crack.fill(qRgb(0, 0, 0))

        self.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)
        self.setFixedWidth(400)
        self.setFixedHeight(400)

        SLIDER_WIDTH = 200
        IMAGEVIEWER_SIZE = 300  # SIZE x SIZE

        self.sliderTolerance = QSlider(Qt.Horizontal)
        self.sliderTolerance.setFocusPolicy(Qt.StrongFocus)
        self.sliderTolerance.setMinimumWidth(SLIDER_WIDTH)
        self.sliderTolerance.setMinimum(1)
        self.sliderTolerance.setMaximum(100)
        self.sliderTolerance.setValue(self.tolerance)
        self.sliderTolerance.setTickInterval(5)
        self.sliderTolerance.setAutoFillBackground(True)
        self.sliderTolerance.valueChanged.connect(self.sliderToleranceChanged)

        self.lblTolerance = QLabel("Tolerance: 20")
        self.lblTolerance.setAutoFillBackground(True)
        str = "Tolerance {}".format(self.tolerance)
        self.lblTolerance.setText(str)

        layoutTolerance = QHBoxLayout()
        layoutTolerance.addWidget(self.lblTolerance)
        layoutTolerance.addWidget(self.sliderTolerance)

        self.viewerplus = QtImageViewerPlus()
        self.viewerplus.disableScrollBars()
        self.viewerplus.setFixedWidth(IMAGEVIEWER_SIZE)
        self.viewerplus.setFixedHeight(IMAGEVIEWER_SIZE)

        self.btnCancel = QPushButton("Cancel")
        self.btnCancel.setAutoFillBackground(True)

        self.btnApply = QPushButton("Apply")
        self.btnApply.setAutoFillBackground(True)

        layoutButtons = QHBoxLayout()
        layoutButtons.addWidget(self.btnCancel)
        layoutButtons.addWidget(self.btnApply)

        layoutV = QVBoxLayout()
        layoutV.addLayout(layoutTolerance)
        layoutV.addWidget(self.viewerplus)
        layoutV.addLayout(layoutButtons)
        layoutV.setSpacing(10)
        self.setLayout(layoutV)

        self.viewerplus.setImage(self.qimg_cropped)
        self.preview()

        self.setAutoFillBackground(True)

        self.setWindowTitle("Crack")
        self.setWindowFlags(Qt.Window | Qt.CustomizeWindowHint
                            | Qt.WindowTitleHint)
Example #6
0
    def run(self, img_map, TILE_SIZE, AGGREGATION_WINDOW_SIZE, AGGREGATION_STEP):
        """

        :param TILE_SIZE: Base tile. This corresponds to the INPUT SIZE of the network.
        :param AGGREGATION_WINDOW_SIZE: Size of the sub-windows to consider for the aggregation.
        :param AGGREGATION_STEP: Step, in pixels, to calculate the different scores.
        :return:
        """

        # create a temporary folder to store the processing
        temp_dir = "temp"
        if not os.path.exists(temp_dir):
            os.mkdir(temp_dir)

        # prepare for running..
        STEP_SIZE = AGGREGATION_WINDOW_SIZE

        W = img_map.width()
        H = img_map.height()

        # top, left, width, height
        working_area = [0, 0, W, H]

        wa_top = working_area[0]
        wa_left = working_area[1]
        wa_width = working_area[2]
        wa_height = working_area[3]

        if wa_top < AGGREGATION_STEP:
            wa_top = AGGREGATION_STEP

        if wa_left < AGGREGATION_STEP:
            wa_left = AGGREGATION_STEP

        if wa_left + wa_width >= W - AGGREGATION_STEP:
            wa_width = W - AGGREGATION_STEP - wa_left - 1

        if wa_top + wa_height >= H - AGGREGATION_STEP:
            wa_height = H - AGGREGATION_STEP - wa_top - 1

        tile_cols = int(wa_width / AGGREGATION_WINDOW_SIZE) + 1
        tile_rows = int(wa_height / AGGREGATION_WINDOW_SIZE) + 1

        if torch.cuda.is_available():
            device = torch.device("cuda")
            self.net.to(device)
            torch.cuda.synchronize()

        self.net.eval()

        # classification (per-tiles)
        tiles_number = tile_rows * tile_cols

        self.processing_step = 0
        self.total_processing_steps = 19 * tiles_number

        for row in range(tile_rows):

            if self.flagStopProcessing is True:
                break

            for col in range(tile_cols):

                if self.flagStopProcessing is True:
                    break

                scores = np.zeros((9, self.nclasses, TILE_SIZE, TILE_SIZE))

                k = 0
                for i in range(-1,2):
                    for j in range(-1,2):

                        top = wa_top - AGGREGATION_STEP + row * STEP_SIZE + i * AGGREGATION_STEP
                        left = wa_left - AGGREGATION_STEP + col * STEP_SIZE + j * AGGREGATION_STEP
                        cropimg = utils.cropQImage(img_map, [top, left, TILE_SIZE, TILE_SIZE])
                        img_np = utils.qimageToNumpyArray(cropimg)

                        img_np = img_np.astype(np.float32)
                        img_np = img_np / 255.0

                        # H x W x C --> C x H x W
                        img_np = img_np.transpose(2, 0, 1)

                        # Normalization (average subtraction)
                        img_np[0] = img_np[0] - self.average_norm[0]
                        img_np[1] = img_np[1] - self.average_norm[1]
                        img_np[2] = img_np[2] - self.average_norm[2]

                        with torch.no_grad():

                            img_tensor = torch.from_numpy(img_np)
                            input = img_tensor.unsqueeze(0)

                            if torch.cuda.is_available():
                                input = input.to(device)

                            outputs = self.net(input)

                            scores[k] = outputs[0].cpu().numpy()
                            k = k + 1

                            self.processing_step += 1
                            self.updateProgress.emit( (100.0 * self.processing_step) / self.total_processing_steps )
                            QCoreApplication.processEvents()


                if self.flagStopProcessing is True:
                    break

                # preds_avg, preds_bayesian = self.aggregateScores(scores, tile_sz=TILE_SIZE,
                #                                     center_window_size=AGGREGATION_WINDOW_SIZE, step=AGGREGATION_STEP)

                preds_avg = self.aggregateScores(scores, tile_sz=TILE_SIZE,
                                                     center_window_size=AGGREGATION_WINDOW_SIZE, step=AGGREGATION_STEP)

                values_t, predictions_t = torch.max(torch.from_numpy(preds_avg), 0)
                preds = predictions_t.cpu().numpy()

                resimg = np.zeros((preds.shape[0], preds.shape[1], 3), dtype='uint8')

                for label_index in range(self.nclasses):
                    resimg[preds == label_index, :] = self.label_colors[label_index]

                tilename = str(row) + "_" + str(col) + ".png"
                filename = os.path.join(temp_dir, tilename)
                utils.rgbToQImage(resimg).save(filename)

                self.processing_step += 1
                self.updateProgress.emit( (100.0 * self.processing_step) / self.total_processing_steps )
                QCoreApplication.processEvents()

        # put tiles together
        qimglabel = QImage(W, H, QImage.Format_RGB32)

        xoffset = 0
        yoffset = 0

        painter = QPainter(qimglabel)

        for r in range(tile_rows):
            for c in range(tile_cols):
                tilename = str(r) + "_" + str(c) + ".png"
                filename = os.path.join(temp_dir, tilename)
                qimg = QImage(filename)

                xoffset = wa_left + c * AGGREGATION_WINDOW_SIZE
                yoffset = wa_top + r * AGGREGATION_WINDOW_SIZE

                cut = False
                W_prime = wa_width
                H_prime = wa_height

                if xoffset + AGGREGATION_WINDOW_SIZE > wa_left + wa_width - 1:
                    W_prime = wa_width + wa_left - xoffset - 1
                    cut = True

                if yoffset + AGGREGATION_WINDOW_SIZE > wa_top + wa_height - 1:
                    H_prime = wa_height + wa_top - yoffset - 1
                    cut = True

                if cut is True:
                    qimg2 = qimg.copy(0, 0, W_prime, H_prime)
                    painter.drawImage(xoffset, yoffset, qimg2)
                else:
                    painter.drawImage(xoffset, yoffset, qimg)

        # detach the qimglabel otherwise the Qt EXPLODES when memory is free
        painter.end()

        labelfile = os.path.join(temp_dir, "labelmap.png")
        qimglabel.save(labelfile)

        torch.cuda.empty_cache()
        del self.net
        self.net = None
Example #7
0
    def run(self,
            TILE_SIZE,
            AGGREGATION_WINDOW_SIZE,
            AGGREGATION_STEP,
            save_scores=False):
        """
        :param TILE_SIZE: Base tile. This corresponds to the INPUT SIZE of the network.
        :param AGGREGATION_WINDOW_SIZE: Size of the center window considered for the aggregation.
        :param AGGREGATION_STEP: Step, in pixels, to calculate the different scores.
        :return:
        """

        # create a temporary folder to store the processing
        if not os.path.exists(self.temp_dir):
            os.mkdir(self.temp_dir)

        # prepare for running..
        DELTA_CROP = int((TILE_SIZE - AGGREGATION_WINDOW_SIZE) / 2)
        tile_cols = int(self.wa_width / AGGREGATION_WINDOW_SIZE) + 1
        tile_rows = int(self.wa_height / AGGREGATION_WINDOW_SIZE) + 1

        if torch.cuda.is_available():
            device = torch.device("cuda")
            self.net.to(device)
            torch.cuda.synchronize()

        self.net.eval()

        # classification (per-tiles)
        tiles_number = tile_rows * tile_cols

        self.processing_step = 0
        self.total_processing_steps = 19 * tiles_number

        for row in range(tile_rows):

            if self.flagStopProcessing is True:
                break

            for col in range(tile_cols):

                if self.flagStopProcessing is True:
                    break

                scores = np.zeros((9, self.nclasses, TILE_SIZE, TILE_SIZE))

                k = 0
                for i in range(-1, 2):
                    for j in range(-1, 2):

                        top = self.wa_top - DELTA_CROP + row * AGGREGATION_WINDOW_SIZE + i * AGGREGATION_STEP
                        left = self.wa_left - DELTA_CROP + col * AGGREGATION_WINDOW_SIZE + j * AGGREGATION_STEP
                        tileimg = utils.cropQImage(
                            self.input_image,
                            [top, left, TILE_SIZE, TILE_SIZE])
                        img_np = utils.qimageToNumpyArray(tileimg)

                        img_np = img_np.astype(np.float32)
                        img_np = img_np / 255.0

                        # H x W x C --> C x H x W
                        img_np = img_np.transpose(2, 0, 1)

                        # Normalization (average subtraction)
                        img_np[0] = img_np[0] - self.average_norm[0]
                        img_np[1] = img_np[1] - self.average_norm[1]
                        img_np[2] = img_np[2] - self.average_norm[2]

                        with torch.no_grad():

                            img_tensor = torch.from_numpy(img_np)
                            input = img_tensor.unsqueeze(0)

                            if torch.cuda.is_available():
                                input = input.to(device)

                            outputs = self.net(input)

                            scores[k] = outputs[0].cpu().numpy()
                            k = k + 1

                            self.processing_step += 1
                            self.updateProgress.emit(
                                (100.0 * self.processing_step) /
                                self.total_processing_steps)
                            QCoreApplication.processEvents()

                if self.flagStopProcessing is True:
                    break

                preds_avg = self.aggregateScores(
                    scores,
                    tile_sz=TILE_SIZE,
                    center_window_size=AGGREGATION_WINDOW_SIZE,
                    step=AGGREGATION_STEP)

                values_t, predictions_t = torch.max(
                    torch.from_numpy(preds_avg), 0)
                preds = predictions_t.cpu().numpy()

                resimg = np.zeros((preds.shape[0], preds.shape[1], 3),
                                  dtype='uint8')
                for label_index in range(self.nclasses):
                    resimg[preds ==
                           label_index, :] = self.label_colors[label_index]

                tilename = str(row) + "_" + str(col) + ".png"
                filename = os.path.join(self.temp_dir, tilename)
                utils.rgbToQImage(resimg).save(filename)

                if save_scores is True:
                    tilename = str(row) + "_" + str(col) + ".dat"
                    filename = os.path.join(self.temp_dir, tilename)
                    fileobject = open(filename, 'wb')
                    pkl.dump(preds_avg, fileobject)
                    fileobject.close()

                self.processing_step += 1
                self.updateProgress.emit((100.0 * self.processing_step) /
                                         self.total_processing_steps)
                QCoreApplication.processEvents()

        self.assembleTiles(tile_rows,
                           tile_cols,
                           AGGREGATION_WINDOW_SIZE,
                           ass_scores=save_scores)
        torch.cuda.empty_cache()
        del self.net
        self.net = None
Example #8
0
    def segmentation(self):

        # compute bbox of scribbles (working area)
        bboxes = []
        for i, curve in enumerate(self.scribbles.points):
            bbox = Mask.pointsBox(curve, int(self.scribbles.size[i] / 2))
            bboxes.append(bbox)
        working_area = Mask.jointBox(bboxes)

        if working_area[0] < 0:
            working_area[0] = 0

        if working_area[1] < 0:
            working_area[1] = 0

        if working_area[0] + working_area[3] > self.viewerplus.img_map.height(
        ) - 1:
            working_area[3] = self.viewerplus.img_map.height(
            ) - 1 - working_area[0]

        if working_area[1] + working_area[2] > self.viewerplus.img_map.width(
        ) - 1:
            working_area[2] = self.viewerplus.img_map.width(
            ) - 1 - working_area[1]

        crop_img = utils.cropQImage(self.viewerplus.img_map, working_area)
        crop_imgnp = utils.qimageToNumpyArray(crop_img)

        # create markers
        mask = np.zeros((working_area[3], working_area[2], 3), dtype=np.int32)

        color_codes = dict()
        counter = 1
        for i, curve in enumerate(self.scribbles.points):

            col = self.scribbles.label[i].fill
            b = col[2]
            g = col[1]
            r = col[0]
            color = (b, g, r)

            color_code = b + 256 * g + 65536 * r
            color_key = str(color_code)
            if color_codes.get(color_key) is None:
                name = self.scribbles.label[i].name
                color_codes[color_key] = (counter, name)
                counter = counter + 1

            curve = np.int32(curve)

            curve[:, 0] = curve[:, 0] - working_area[1]
            curve[:, 1] = curve[:, 1] - working_area[0]

            curve = curve.reshape((-1, 1, 2))
            mask = cv2.polylines(mask,
                                 pts=[curve],
                                 isClosed=False,
                                 color=color,
                                 thickness=self.scribbles.size[i],
                                 lineType=cv2.LINE_8)

        mask = np.uint8(mask)

        markers = np.zeros((working_area[3], working_area[2]), dtype='int32')
        for label in self.scribbles.label:
            col = label.fill
            b = col[2]
            g = col[1]
            r = col[0]
            color_code = b + 256 * g + 65536 * r
            color_key = str(color_code)

            idx = np.where((mask[:, :, 0] == b) & (mask[:, :, 1] == g)
                           & (mask[:, :, 2] == r))
            (value, name) = color_codes[color_key]
            markers[idx] = value

        # markers = np.int32(255*rgb2gray(mask))
        # markersprint = 255*rgb2gray(mask)
        markersprint = markers
        cv2.imwrite('mask.png', markersprint)

        # watershed segmentation
        segmentation = cv2.watershed(crop_imgnp, markers)
        segmentation = filters.median(segmentation, disk(5), mode="mirror")
        cv2.imwrite('segmentation.png', segmentation)

        # the result of the segmentation must be converted into labels again
        lbls = measure.label(segmentation)

        blobs = []
        for region in measure.regionprops(lbls):
            blob = Blob(region, working_area[1], working_area[0],
                        self.viewerplus.annotations.getFreeId())
            color_index = segmentation[region.coords[0][0],
                                       region.coords[0][1]]
            data = list(color_codes.items())
            index = 0
            for i in range(len(data)):
                (color_code, t) = data[i]
                if t[0] == color_index:
                    color_code = int(color_code)
                    r = int(color_code / 65536)
                    g = int(int(color_code - r * 65536) / 256)
                    b = int(color_code - r * 65536 - g * 256)
                    color = [r, g, b]
                    name = t[1]
                    break

            blob.class_color = color
            blob.class_name = name

            blobs.append(blob)

        return blobs