Example #1
0
    def __init__(self, spectrum, arf):
        """
        Generate a convolved spectrum by convolving a spectrum with an
        ARF.

        Parameters
        ----------
        spectrum : :class:`~soxs.spectra.Spectrum` object
            The input spectrum to convolve with.
        arf : string or :class:`~soxs.instrument.AuxiliaryResponseFile`
            The ARF to use in the convolution.
        """
        if not isinstance(arf, AuxiliaryResponseFile):
            arf = AuxiliaryResponseFile(arf)
        self.arf = arf
        earea = arf.interpolate_area(spectrum.emid)
        rate = spectrum.flux * earea
        super(ConvolvedSpectrum, self).__init__(spectrum.ebins, rate)
Example #2
0
    def __init__(self, spectrum, arf):
        """
        Generate a convolved spectrum by convolving a spectrum with an
        ARF.

        Parameters
        ----------
        spectrum : :class:`~soxs.spectra.Spectrum` object
            The input spectrum to convolve with.
        arf : string or :class:`~soxs.instrument.AuxiliaryResponseFile`
            The ARF to use in the convolution.
        """
        if not isinstance(arf, AuxiliaryResponseFile):
            arf = AuxiliaryResponseFile(arf)
        self.arf = arf
        earea = arf.interpolate_area(spectrum.emid)
        rate = spectrum.flux * earea
        super(ConvolvedSpectrum, self).__init__(spectrum.ebins, rate)
Example #3
0
def test_convolved_spectra():
    arf = AuxiliaryResponseFile("xrs_hdxi_3x10.arf")
    spec1 = Spectrum.from_powerlaw(2.0, 0.01, 1.0, 0.1, 10.0, 1000)
    cspec1 = ConvolvedSpectrum(spec1, arf)
    cspec2 = spec1*arf
    spec2 = cspec1.deconvolve()
    assert_array_equal(cspec1.ebins.value, cspec2.ebins.value)
    assert_array_equal(spec1.ebins.value, spec2.ebins.value)
    assert_array_equal(cspec1.flux.value, cspec2.flux.value)
    assert_allclose(spec1.flux.value, spec2.flux.value)
Example #4
0
def test_uniform_bkgnd_scale():
    hdxi_arf = AuxiliaryResponseFile("xrs_hdxi_3x10.arf")
    events, event_params = make_background((50, "ks"),
                                           "hdxi", [30., 45.],
                                           foreground=True,
                                           instr_bkgnd=True,
                                           ptsrc_bkgnd=False,
                                           prng=prng)
    ncts = np.logical_and(events["energy"] >= 0.7,
                          events["energy"] <= 2.0).sum()
    t_exp = event_params["exposure_time"]
    fov = (event_params["fov"] * 60.0)**2
    S = ncts / t_exp / fov
    dS = np.sqrt(ncts) / t_exp / fov
    foreground = ConvolvedBackgroundSpectrum(hm_astro_bkgnd, hdxi_arf)
    f_sum = foreground.get_flux_in_band(0.7, 2.0)[0]
    i_sum = acisi_particle_bkgnd.get_flux_in_band(0.7, 2.0)[0]
    b_sum = (f_sum + i_sum).to("ph/(arcsec**2*s)").value
    assert np.abs(S - b_sum) < 1.645 * dS
Example #5
0
def test_simulate_bkgnd_spectrum():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    prng = RandomState(29)

    hdxi_arf = AuxiliaryResponseFile("xrs_hdxi_3x10.arf")
    hdxi_rmf = RedistributionMatrixFile("xrs_hdxi.rmf")

    exp_time = 50000.0
    fov = 3600.0
    simulate_spectrum(None,
                      "hdxi",
                      exp_time,
                      "test_bkgnd.pha",
                      instr_bkgnd=True,
                      foreground=True,
                      prng=prng,
                      overwrite=True,
                      bkgnd_area=(fov, "arcsec**2"))
    ch_min = hdxi_rmf.e_to_ch(0.7) - hdxi_rmf.cmin
    ch_max = hdxi_rmf.e_to_ch(2.0) - hdxi_rmf.cmin
    f = pyfits.open("test_bkgnd.pha")
    ncts = f["SPECTRUM"].data["COUNTS"][ch_min:ch_max].sum()
    f.close()
    S = ncts / exp_time / fov
    dS = np.sqrt(ncts) / exp_time / fov
    foreground = ConvolvedBackgroundSpectrum(hm_astro_bkgnd, hdxi_arf)
    f_sum = foreground.get_flux_in_band(0.7, 2.0)[0]
    i_sum = acisi_particle_bkgnd.get_flux_in_band(0.7, 2.0)[0]
    b_sum = (f_sum + i_sum).to("ph/(arcsec**2*s)").value
    assert np.abs(S - b_sum) < 1.645 * dS

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Example #6
0
def generate_events(input_events, exp_time, instrument, sky_center, 
                    no_dither=False, dither_params=None, 
                    roll_angle=0.0, subpixel_res=False, prng=None):
    """
    Take unconvolved events and convolve them with instrumental responses. This 
    function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Determines energy channels using the RMF

    This function is not meant to be called by the end-user but is used by
    the :func:`~soxs.instrument.instrument_simulator` function.

    Parameters
    ----------
    input_events : string, dict, or None
        The unconvolved events to be used as input. Can be one of the
        following:
        1. The name of a SIMPUT catalog file.
        2. A Python dictionary containing the following items:
        "ra": A NumPy array of right ascension values in degrees.
        "dec": A NumPy array of declination values in degrees.
        "energy": A NumPy array of energy values in keV.
        "flux": The flux of the entire source, in units of erg/cm**2/s.
    out_file : string
        The name of the event file to be written.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res: boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    import pyregion._region_filter as rfilter
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    prng = parse_prng(prng)
    if isinstance(input_events, dict):
        parameters = {}
        for key in ["flux", "emin", "emax", "sources"]:
            parameters[key] = input_events[key]
        event_list = []
        for i in range(len(parameters["flux"])):
            edict = {}
            for key in ["ra", "dec", "energy"]:
                edict[key] = input_events[key][i]
            event_list.append(edict)
    elif isinstance(input_events, string_types):
        # Assume this is a SIMPUT catalog
        event_list, parameters = read_simput_catalog(input_events)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" % instrument)
    if not instrument_spec["imaging"]:
        raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] +
                           "designed for imaging observations!")

    arf_file = get_response_path(instrument_spec["arf"])
    rmf_file = get_response_path(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"]/nx/60. # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0

    if not instrument_spec["dither"]:
        dither_on = False
    else:
        dither_on = not no_dither
    if dither_params is None:
        dither_params = [8.0, 8.0, 1000.0, 707.0]
    dither_dict = {"x_amp": dither_params[0],
                   "y_amp": dither_params[1],
                   "x_period": dither_params[2],
                   "y_period": dither_params[3],
                   "dither_on": dither_on,
                   "plate_scale": plate_scale_arcsec}

    event_params = {}
    event_params["exposure_time"] = exp_time
    event_params["arf"] = arf.filename
    event_params["sky_center"] = sky_center
    event_params["pix_center"] = np.array([0.5*(2*nx+1)]*2)
    event_params["num_pixels"] = nx
    event_params["plate_scale"] = plate_scale
    event_params["rmf"] = rmf.filename
    event_params["channel_type"] = rmf.header["CHANTYPE"]
    event_params["telescope"] = rmf.header["TELESCOP"]
    event_params["instrument"] = instrument_spec['name']
    event_params["mission"] = rmf.header.get("MISSION", "")
    event_params["nchan"] = rmf.n_ch
    event_params["roll_angle"] = roll_angle
    event_params["fov"] = instrument_spec["fov"]
    event_params["chan_lim"] = [rmf.cmin, rmf.cmax]
    event_params["chips"] = instrument_spec["chips"]
    event_params["dither_params"] = dither_dict
    event_params["aimpt_coords"] = instrument_spec["aimpt_coords"]

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN","DEC--TAN"]
    w.wcs.cunit = ["deg"]*2

    rot_mat = get_rot_mat(roll_angle)

    all_events = defaultdict(list)

    for i, evts in enumerate(event_list):

        mylog.info("Detecting events from source %s." % parameters["sources"][i])

        # Step 1: Use ARF to determine which photons are observed

        mylog.info("Applying energy-dependent effective area from %s." % os.path.split(arf.filename)[-1])
        refband = [parameters["emin"][i], parameters["emax"][i]]
        events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0,:] + event_params["aimpt_coords"][0]
            dety = det[1,:] + event_params["aimpt_coords"][1]

            # Add times to events
            events['time'] = prng.uniform(size=n_evt, low=0.0,
                                          high=event_params["exposure_time"])

            # Apply dithering

            x_offset, y_offset = perform_dither(events["time"], dither_dict)

            detx -= x_offset
            dety -= y_offset

            # PSF scattering of detector coordinates

            if instrument_spec["psf"] is not None:
                psf_type, psf_spec = instrument_spec["psf"]
                if psf_type == "gaussian":
                    sigma = psf_spec/sigma_to_fwhm/plate_scale_arcsec
                    detx += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                    dety += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                else:
                    raise NotImplementedError("PSF type %s not implemented!" % psf_type)

            # Convert detector coordinates to chip coordinates.
            # Throw out events that don't fall on any chip.

            cx = np.trunc(detx)+0.5*np.sign(detx)
            cy = np.trunc(dety)+0.5*np.sign(dety)

            if event_params["chips"] is None:
                events["chip_id"] = np.zeros(n_evt, dtype='int')
                keepx = np.logical_and(cx >= -0.5*nx, cx <= 0.5*nx)
                keepy = np.logical_and(cy >= -0.5*nx, cy <= 0.5*nx)
                keep = np.logical_and(keepx, keepy)
            else:
                events["chip_id"] = -np.ones(n_evt, dtype='int')
                for i, chip in enumerate(event_params["chips"]):
                    thisc = np.ones(n_evt, dtype='bool')
                    rtype = chip[0]
                    args = chip[1:]
                    r = getattr(rfilter, rtype)(*args)
                    inside = r.inside(cx, cy)
                    thisc = np.logical_and(thisc, inside)
                    events["chip_id"][thisc] = i
                keep = events["chip_id"] > -1

            mylog.info("%d events were rejected because " % (n_evt-keep.sum()) +
                       "they do not fall on any CCD.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning("No events are within the field of view for this source!!!")
            else:

                # Keep only those events which fall on a chip

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates, unless the
                # user has specified that they want subpixel resolution

                if subpixel_res:
                    events["detx"] = detx[keep]
                    events["dety"] = dety[keep]
                else:
                    events["detx"] = cx[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)
                    events["dety"] = cy[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)

                # Convert detector coordinates back to pixel coordinates by
                # adding the dither offsets back in and applying the rotation
                # matrix again

                det = np.array([events["detx"] + x_offset[keep] - event_params["aimpt_coords"][0],
                                events["dety"] + y_offset[keep] - event_params["aimpt_coords"][1]])
                pix = np.dot(rot_mat.T, det)

                events["xpix"] = pix[0,:] + event_params['pix_center'][0]
                events["ypix"] = pix[1,:] + event_params['pix_center'][1]

        if n_evt > 0:
            for key in events:
                all_events[key] = np.concatenate([all_events[key], events[key]])

    if len(all_events["energy"]) == 0:
        mylog.warning("No events from any of the sources in the catalog were detected!")
        for key in ["xpix", "ypix", "detx", "dety", "time", "chip_id", event_params["channel_type"]]:
            all_events[key] = np.array([])
    else:
        # Step 4: Scatter energies with RMF
        mylog.info("Scattering energies with RMF %s." % os.path.split(rmf.filename)[-1])
        all_events = rmf.scatter_energies(all_events, prng=prng)

    return all_events, event_params
Example #7
0
from soxs.events import write_spectrum
from soxs.instrument_registry import get_instrument_from_registry

ckms = clight.in_units("km/s").v

def setup():
    from yt.config import ytcfg
    ytcfg["yt", "__withintesting"] = "True"

try:
    mucal_spec = get_instrument_from_registry("mucal")
except KeyError:
    pass

rmf = RedistributionMatrixFile(mucal_spec["rmf"])
arf = AuxiliaryResponseFile(mucal_spec['arf'])
fit_model = TableApecModel(rmf.elo[0], rmf.ehi[-1], rmf.n_e)
agen_var = TableApecModel(rmf.elo[0], rmf.ehi[-1], rmf.n_e,
                          var_elem=["O", "Ca"], thermal_broad=True)


def mymodel(pars, x, xhi=None):
    dx = x[1]-x[0]
    tm = TBabsModel(pars[0])
    tbabs = tm.get_absorb(x+0.5*dx)
    bapec = fit_model.return_spectrum(pars[1], pars[2], pars[3], pars[4], velocity=pars[5])
    eidxs = np.logical_and(rmf.elo >= x[0]-0.5*dx, rmf.elo <= x[-1]+0.5*dx)
    return tbabs*bapec[eidxs]


def mymodel_var(pars, x, xhi=None):
Example #8
0
def plaw_fit(alpha_sim):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    redshift = 0.01

    exp_time = 5.0e4
    area = 40000.0
    inst_name = "hdxi"

    spec = Spectrum.from_powerlaw(alpha_sim, redshift, norm_sim)
    spec.apply_foreground_absorption(nH_sim)
    e = spec.generate_energies(exp_time, area)

    pt_src = PointSourceModel(30.0, 45.0, e.size)

    write_photon_list("plaw_model",
                      "plaw_model",
                      e.flux,
                      pt_src.ra,
                      pt_src.dec,
                      e,
                      clobber=True)

    instrument_simulator("plaw_model_simput.fits",
                         "plaw_model_evt.fits",
                         exp_time,
                         inst_name, [30.0, 45.0],
                         astro_bkgnd=None,
                         instr_bkgnd_scale=0.0)

    inst = get_instrument_from_registry(inst_name)
    arf = AuxiliaryResponseFile(inst["arf"])
    rmf = RedistributionMatrixFile(inst["rmf"])
    os.system("cp %s ." % arf.filename)
    os.system("cp %s ." % rmf.filename)

    write_spectrum("plaw_model_evt.fits", "plaw_model_evt.pha", clobber=True)

    load_user_model(mymodel, "wplaw")
    add_user_pars("wplaw", ["nH", "norm", "redshift", "alpha"],
                  [0.01, norm_sim * 0.8, redshift, 0.9],
                  parmins=[0.0, 0.0, 0.0, 0.1],
                  parmaxs=[10.0, 1.0e9, 10.0, 10.0],
                  parfrozen=[False, False, True, False])

    load_pha("plaw_model_evt.pha")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.5, 9.0:")
    set_model("wplaw")
    fit()
    set_covar_opt("sigma", 1.645)
    covar()
    res = get_covar_results()

    assert np.abs(res.parvals[0] - nH_sim) < res.parmaxes[0]
    assert np.abs(res.parvals[1] - norm_sim) < res.parmaxes[1]
    assert np.abs(res.parvals[2] - alpha_sim) < res.parmaxes[2]

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Example #9
0
def make_exposure_map(event_file, expmap_file, energy, weights=None,
                      asol_file=None, normalize=True, overwrite=False,
                      reblock=1, nhistx=16, nhisty=16, order=1):
    """
    Make an exposure map for a SOXS event file, and optionally write
    an aspect solution file. The exposure map will be created by
    binning an aspect histogram over the range of the aspect solution.

    Parameters
    ----------
    event_file : string
        The path to the event file to use for making the exposure map.
    expmap_file : string
        The path to write the exposure map file to.
    energy : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, or NumPy array
        The energy in keV to use when computing the exposure map, or 
        a set of energies to be used with the *weights* parameter. If
        providing a set, it must be in keV.
    weights : array-like, optional
        The weights to use with a set of energies given in the
        *energy* parameter. Used to create a more accurate exposure
        map weighted by a range of energies. Default: None
    asol_file : string, optional
        The path to write the aspect solution file to, if desired.
        Default: None
    normalize : boolean, optional
        If True, the exposure map will be divided by the exposure time
        so that the map's units are cm**2. Default: True
    overwrite : boolean, optional
        Whether or not to overwrite an existing file. Default: False
    reblock : integer, optional
        Supply an integer power of 2 here to make an exposure map 
        with a different binning. Default: 1
    nhistx : integer, optional
        The number of bins in the aspect histogram in the DETX
        direction. Default: 16
    nhisty : integer, optional
        The number of bins in the aspect histogram in the DETY
        direction. Default: 16
    order : integer, optional
        The interpolation order to use when making the exposure map. 
        Default: 1
    """
    import pyregion._region_filter as rfilter
    from scipy.ndimage.interpolation import rotate, shift
    from soxs.instrument import AuxiliaryResponseFile, perform_dither
    if isinstance(energy, np.ndarray) and weights is None:
        raise RuntimeError("Must supply a single value for the energy if "
                           "you do not supply weights!")
    if not isinstance(energy, np.ndarray):
        energy = parse_value(energy, "keV")
    f_evt = pyfits.open(event_file)
    hdu = f_evt["EVENTS"]
    arf = AuxiliaryResponseFile(hdu.header["ANCRFILE"])
    exp_time = hdu.header["EXPOSURE"]
    nx = int(hdu.header["TLMAX2"]-0.5)//2
    ny = int(hdu.header["TLMAX3"]-0.5)//2
    ra0 = hdu.header["TCRVL2"]
    dec0 = hdu.header["TCRVL3"]
    xdel = hdu.header["TCDLT2"]
    ydel = hdu.header["TCDLT3"]
    x0 = hdu.header["TCRPX2"]
    y0 = hdu.header["TCRPX3"]
    xdet0 = 0.5*(2*nx+1)
    ydet0 = 0.5*(2*ny+1)
    xaim = hdu.header.get("AIMPT_X", 0.0)
    yaim = hdu.header.get("AIMPT_Y", 0.0)
    roll = hdu.header["ROLL_PNT"]
    instr = instrument_registry[hdu.header["INSTRUME"].lower()]
    dither_params = {}
    if "DITHXAMP" in hdu.header:
        dither_params["x_amp"] = hdu.header["DITHXAMP"]
        dither_params["y_amp"] = hdu.header["DITHYAMP"]
        dither_params["x_period"] = hdu.header["DITHXPER"]
        dither_params["y_period"] = hdu.header["DITHYPER"]
        dither_params["plate_scale"] = ydel*3600.0
        dither_params["dither_on"] = True
    else:
        dither_params["dither_on"] = False
    f_evt.close()

    # Create time array for aspect solution
    dt = 1.0 # Seconds
    t = np.arange(0.0, exp_time+dt, dt)

    # Construct WCS
    w = pywcs.WCS(naxis=2)
    w.wcs.crval = [ra0, dec0]
    w.wcs.crpix = [x0, y0]
    w.wcs.cdelt = [xdel, ydel]
    w.wcs.ctype = ["RA---TAN","DEC--TAN"]
    w.wcs.cunit = ["deg"]*2

    # Create aspect solution if we had dithering.
    # otherwise just set the offsets to zero
    if dither_params["dither_on"]:
        x_off, y_off = perform_dither(t, dither_params)
        # Make the aspect histogram
        x_amp = dither_params["x_amp"]/dither_params["plate_scale"]
        y_amp = dither_params["y_amp"]/dither_params["plate_scale"]
        x_edges = np.linspace(-x_amp, x_amp, nhistx+1, endpoint=True)
        y_edges = np.linspace(-y_amp, y_amp, nhisty+1, endpoint=True)
        asphist = np.histogram2d(x_off, y_off, (x_edges, y_edges))[0]
        asphist *= dt
        x_mid = 0.5*(x_edges[1:]+x_edges[:-1])/reblock
        y_mid = 0.5*(y_edges[1:]+y_edges[:-1])/reblock

    # Determine the effective area
    eff_area = arf.interpolate_area(energy).value
    if weights is not None:
        eff_area = np.average(eff_area, weights=weights)

    if instr["chips"] is None:
        rtypes = ["Box"]
        args = [[0.0, 0.0, instr["num_pixels"], instr["num_pixels"]]]
    else:
        rtypes = []
        args = []
        for i, chip in enumerate(instr["chips"]):
            rtypes.append(chip[0])
            args.append(np.array(chip[1:]))

    tmpmap = np.zeros((2*nx, 2*ny))

    for rtype, arg in zip(rtypes, args):
        rfunc = getattr(rfilter, rtype)
        new_args = parse_region_args(rtype, arg, xdet0-xaim-1.0, ydet0-yaim-1.0)
        r = rfunc(*new_args)
        tmpmap += r.mask(tmpmap).astype("float64")

    tmpmap = downsample(tmpmap, reblock)

    if dither_params["dither_on"]:
        expmap = np.zeros(tmpmap.shape)
        niter = nhistx*nhisty
        pbar = tqdm(leave=True, total=niter, desc="Creating exposure map ")
        for i in range(nhistx):
            for j in range(nhisty):
                expmap += shift(tmpmap, (x_mid[i], y_mid[j]), order=order)*asphist[i, j]
            pbar.update(nhisty)
        pbar.close()
    else:
        expmap = tmpmap*exp_time

    expmap *= eff_area
    if normalize:
        expmap /= exp_time

    if roll != 0.0:
        rotate(expmap, roll, output=expmap, reshape=False)

    expmap[expmap < 0.0] = 0.0

    map_header = {"EXPOSURE": exp_time,
                  "MTYPE1": "EQPOS",
                  "MFORM1": "RA,DEC",
                  "CTYPE1": "RA---TAN",
                  "CTYPE2": "DEC--TAN",
                  "CRVAL1": ra0,
                  "CRVAL2": dec0,
                  "CUNIT1": "deg",
                  "CUNIT2": "deg",
                  "CDELT1": xdel*reblock,
                  "CDELT2": ydel*reblock,
                  "CRPIX1": 0.5*(2.0*nx//reblock+1),
                  "CRPIX2": 0.5*(2.0*ny//reblock+1)}

    map_hdu = pyfits.ImageHDU(expmap, header=pyfits.Header(map_header))
    map_hdu.name = "EXPMAP"
    map_hdu.writeto(expmap_file, overwrite=overwrite)

    if asol_file is not None:

        if dither_params["dither_on"]:

            det = np.array([x_off, y_off])

            pix = np.dot(get_rot_mat(roll).T, det)

            ra, dec = w.wcs_pix2world(pix[0,:]+x0, pix[1,:]+y0, 1)

            col_t = pyfits.Column(name='time', format='D', unit='s', array=t)
            col_ra = pyfits.Column(name='ra', format='D', unit='deg', array=ra)
            col_dec = pyfits.Column(name='dec', format='D', unit='deg', array=dec)

            coldefs = pyfits.ColDefs([col_t, col_ra, col_dec])
            tbhdu = pyfits.BinTableHDU.from_columns(coldefs)
            tbhdu.name = "ASPSOL"
            tbhdu.header["EXPOSURE"] = exp_time

            hdulist = [pyfits.PrimaryHDU(), tbhdu]

            pyfits.HDUList(hdulist).writeto(asol_file, overwrite=overwrite)

        else:

            mylog.warning("Refusing to write an aspect solution file because "
                          "there was no dithering.")
Example #10
0
def simulate_spectrum(spec, instrument, exp_time, out_file,
                      instr_bkgnd=False, foreground=False,
                      ptsrc_bkgnd=False, bkgnd_area=None,
                      absorb_model="wabs", nH=0.05,
                      overwrite=False, prng=None):
    """
    Generate a PI or PHA spectrum from a :class:`~soxs.spectra.Spectrum`
    by convolving it with responses. To be used if one wants to 
    create a spectrum without worrying about spatial response. Similar
    to XSPEC's "fakeit".

    Parameters
    ----------
    spec : :class:`~soxs.spectra.Spectrum`
        The spectrum to be convolved. If None is supplied, only backgrounds
        will be simulated (if they are turned on).
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time in seconds.
    out_file : string
        The file to write the spectrum to.
    instr_bkgnd : boolean, optional
        Whether or not to include the instrumental/particle background. 
        Default: False
    foreground : boolean, optional
        Whether or not to include the local foreground.
        Default: False
    ptsrc_bkgnd : boolean, optional
        Whether or not to include the unresolved point-source background. 
        Default: False
    bkgnd_area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The area on the sky for the background components, in square arcminutes.
        Default: None, necessary to specify if any of the background components
        are turned on. 
    absorb_model : string, optional
        The absorption model to use, "wabs" or "tbabs". Default: "wabs"
    nH : float, optional
        The hydrogen column in units of 10**22 atoms/cm**2. 
        Default: 0.05
    overwrite : boolean, optional
        Whether or not to overwrite an existing file. Default: False
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 

    Examples
    --------
    >>> spec = soxs.Spectrum.from_file("my_spectrum.txt")
    >>> soxs.simulate_spectrum(spec, "lynx_lxm", 100000.0, 
    ...                        "my_spec.pi", overwrite=True)
    """
    from soxs.events import _write_spectrum
    from soxs.instrument import RedistributionMatrixFile, \
        AuxiliaryResponseFile
    from soxs.spectra import ConvolvedSpectrum
    from soxs.background.foreground import hm_astro_bkgnd
    from soxs.background.instrument import instrument_backgrounds
    from soxs.background.spectra import BackgroundSpectrum
    prng = parse_prng(prng)
    exp_time = parse_value(exp_time, "s")
    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" % instrument)
    if foreground or instr_bkgnd or ptsrc_bkgnd:
        if instrument_spec["grating"]:
            raise NotImplementedError("Backgrounds cannot be included in simulations "
                                      "of gratings spectra at this time!")
        if bkgnd_area is None:
            raise RuntimeError("The 'bkgnd_area' argument must be set if one wants "
                               "to simulate backgrounds! Specify a value in square "
                               "arcminutes.")
        bkgnd_area = np.sqrt(parse_value(bkgnd_area, "arcmin**2"))
    elif spec is None:
        raise RuntimeError("You have specified no source spectrum and no backgrounds!")
    arf_file = get_response_path(instrument_spec["arf"])
    rmf_file = get_response_path(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    event_params = {}
    event_params["RESPFILE"] = os.path.split(rmf.filename)[-1]
    event_params["ANCRFILE"] = os.path.split(arf.filename)[-1]
    event_params["TELESCOP"] = rmf.header["TELESCOP"]
    event_params["INSTRUME"] = rmf.header["INSTRUME"]
    event_params["MISSION"] = rmf.header.get("MISSION", "")

    out_spec = np.zeros(rmf.n_ch)

    if spec is not None:
        cspec = ConvolvedSpectrum(spec, arf)
        out_spec += rmf.convolve_spectrum(cspec, exp_time, prng=prng)

    fov = None if bkgnd_area is None else np.sqrt(bkgnd_area)

    if foreground:
        mylog.info("Adding in astrophysical foreground.")
        cspec_frgnd = ConvolvedSpectrum(hm_astro_bkgnd.to_spectrum(fov), arf)
        out_spec += rmf.convolve_spectrum(cspec_frgnd, exp_time, prng=prng)
    if instr_bkgnd and instrument_spec["bkgnd"] is not None:
        mylog.info("Adding in instrumental background.")
        instr_spec = instrument_backgrounds[instrument_spec["bkgnd"]]
        cspec_instr = instr_spec.to_scaled_spectrum(fov,
                                                    instrument_spec["focal_length"])
        out_spec += rmf.convolve_spectrum(cspec_instr, exp_time, prng=prng)
    if ptsrc_bkgnd:
        mylog.info("Adding in background from unresolved point-sources.")
        spec_plaw = BackgroundSpectrum.from_powerlaw(1.45, 0.0, 2.0e-7, emin=0.01,
                                                     emax=10.0, nbins=300000)
        spec_plaw.apply_foreground_absorption(nH, model=absorb_model)
        cspec_plaw = ConvolvedSpectrum(spec_plaw.to_spectrum(fov), arf)
        out_spec += rmf.convolve_spectrum(cspec_plaw, exp_time, prng=prng)

    bins = (np.arange(rmf.n_ch)+rmf.cmin).astype("int32")

    _write_spectrum(bins, out_spec, exp_time, rmf.header["CHANTYPE"], 
                    event_params, out_file, overwrite=overwrite)
Example #11
0
def make_background(exp_time, instrument, sky_center, foreground=True, 
                    ptsrc_bkgnd=True, instr_bkgnd=True, no_dither=False,
                    dither_params=None, roll_angle=0.0, subpixel_res=False, 
                    input_sources=None, absorb_model="wabs", nH=0.05, prng=None):
    """
    Make background events. 

    Parameters
    ----------
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    foreground : boolean, optional
        Whether or not to include the Galactic foreground. Default: True
    instr_bkgnd : boolean, optional
        Whether or not to include the instrumental background. Default: True
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    ptsrc_bkgnd : boolean, optional
        Whether or not to include the point-source background. Default: True
        Default: 0.05
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res: boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    input_sources : string, optional
        If set to a filename, input the point source positions, fluxes,
        and spectral indices from an ASCII table instead of generating
        them. Default: None
    absorb_model : string, optional
        The absorption model to use, "wabs" or "tbabs". Default: "wabs"
    nH : float, optional
        The hydrogen column in units of 10**22 atoms/cm**2. 
        Default: 0.05
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    from soxs.background import make_instrument_background, \
        make_foreground, make_ptsrc_background
    prng = parse_prng(prng)
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" % instrument)
    if not instrument_spec["imaging"]:
        raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] +
                           "designed for imaging observations!")
    fov = instrument_spec["fov"]

    input_events = defaultdict(list)

    arf_file = get_response_path(instrument_spec["arf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf_file = get_response_path(instrument_spec["rmf"])
    rmf = RedistributionMatrixFile(rmf_file)

    if ptsrc_bkgnd:
        mylog.info("Adding in point-source background.")
        ptsrc_events = make_ptsrc_background(exp_time, fov, sky_center,
                                             area=1.2*arf.max_area,
                                             input_sources=input_sources, 
                                             absorb_model=absorb_model,
                                             nH=nH, prng=prng)
        for key in ["ra", "dec", "energy"]:
            input_events[key].append(ptsrc_events[key])
        input_events["flux"].append(ptsrc_events["flux"])
        input_events["emin"].append(ptsrc_events["energy"].min())
        input_events["emax"].append(ptsrc_events["energy"].max())
        input_events["sources"].append("ptsrc_bkgnd")
        events, event_params = generate_events(input_events, exp_time,
                                               instrument, sky_center,
                                               no_dither=no_dither,
                                               dither_params=dither_params, 
                                               roll_angle=roll_angle,
                                               subpixel_res=subpixel_res,
                                               prng=prng)
        mylog.info("Generated %d photons from the point-source background." % len(events["energy"]))
    else:
        nx = instrument_spec["num_pixels"]
        events = defaultdict(list)
        if not instrument_spec["dither"]:
            dither_on = False
        else:
            dither_on = not no_dither
        if dither_params is None:
            dither_params = [8.0, 8.0, 1000.0, 707.0]
        dither_dict = {"x_amp": dither_params[0],
                       "y_amp": dither_params[1],
                       "x_period": dither_params[2],
                       "y_period": dither_params[3],
                       "dither_on": dither_on,
                       "plate_scale": instrument_spec["fov"]/nx*60.0}
        event_params = {"exposure_time": exp_time, 
                        "fov": instrument_spec["fov"],
                        "num_pixels": nx,
                        "pix_center": np.array([0.5*(2*nx+1)]*2),
                        "channel_type": rmf.header["CHANTYPE"],
                        "sky_center": sky_center,
                        "dither_params": dither_dict,
                        "plate_scale": instrument_spec["fov"]/nx/60.0,
                        "chan_lim": [rmf.cmin, rmf.cmax],
                        "rmf": rmf_file, "arf": arf_file,
                        "telescope": rmf.header["TELESCOP"],
                        "instrument": instrument_spec['name'],
                        "mission": rmf.header.get("MISSION", ""),
                        "nchan": rmf.n_ch,
                        "roll_angle": roll_angle,
                        "aimpt_coords": instrument_spec["aimpt_coords"]}

    if "chips" not in event_params:
        event_params["chips"] = instrument_spec["chips"]

    if foreground:
        mylog.info("Adding in astrophysical foreground.")
        bkg_events = make_foreground(event_params, arf, rmf, prng=prng)
        for key in bkg_events:
            events[key] = np.concatenate([events[key], bkg_events[key]])
    if instr_bkgnd and instrument_spec["bkgnd"] is not None:
        mylog.info("Adding in instrumental background.")
        bkg_events = make_instrument_background(instrument_spec["bkgnd"], 
                                                event_params, rmf, prng=prng)
        for key in bkg_events:
            events[key] = np.concatenate([events[key], bkg_events[key]])

    return events, event_params
Example #12
0
def generate_events(input_events, exp_time, instrument, sky_center, 
                    no_dither=False, dither_params=None, 
                    roll_angle=0.0, subpixel_res=False, prng=None):
    """
    Take unconvolved events and convolve them with instrumental responses. This 
    function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Determines energy channels using the RMF

    This function is not meant to be called by the end-user but is used by
    the :func:`~soxs.instrument.instrument_simulator` function.

    Parameters
    ----------
    input_events : string, dict, or None
        The unconvolved events to be used as input. Can be one of the
        following:
        1. The name of a SIMPUT catalog file.
        2. A Python dictionary containing the following items:
        "ra": A NumPy array of right ascension values in degrees.
        "dec": A NumPy array of declination values in degrees.
        "energy": A NumPy array of energy values in keV.
        "flux": The flux of the entire source, in units of erg/cm**2/s.
    out_file : string
        The name of the event file to be written.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res: boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    import pyregion._region_filter as rfilter
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    prng = parse_prng(prng)
    if isinstance(input_events, dict):
        parameters = {}
        for key in ["flux", "emin", "emax", "sources"]:
            parameters[key] = input_events[key]
        event_list = []
        for i in range(len(parameters["flux"])):
            edict = {}
            for key in ["ra", "dec", "energy"]:
                edict[key] = input_events[key][i]
            event_list.append(edict)
    elif isinstance(input_events, string_types):
        # Assume this is a SIMPUT catalog
        event_list, parameters = read_simput_catalog(input_events)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" % instrument)
    if not instrument_spec["imaging"]:
        raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] +
                           "designed for imaging observations!")

    arf_file = get_response_path(instrument_spec["arf"])
    rmf_file = get_response_path(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"]/nx/60. # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0

    if not instrument_spec["dither"]:
        dither_on = False
    else:
        dither_on = not no_dither
    if dither_params is None:
        dither_params = [8.0, 8.0, 1000.0, 707.0]
    dither_dict = {"x_amp": dither_params[0],
                   "y_amp": dither_params[1],
                   "x_period": dither_params[2],
                   "y_period": dither_params[3],
                   "dither_on": dither_on,
                   "plate_scale": plate_scale_arcsec}

    event_params = {}
    event_params["exposure_time"] = exp_time
    event_params["arf"] = arf.filename
    event_params["sky_center"] = sky_center
    event_params["pix_center"] = np.array([0.5*(2*nx+1)]*2)
    event_params["num_pixels"] = nx
    event_params["plate_scale"] = plate_scale
    event_params["rmf"] = rmf.filename
    event_params["channel_type"] = rmf.header["CHANTYPE"]
    event_params["telescope"] = rmf.header["TELESCOP"]
    event_params["instrument"] = instrument_spec['name']
    event_params["mission"] = rmf.header.get("MISSION", "")
    event_params["nchan"] = rmf.n_ch
    event_params["roll_angle"] = roll_angle
    event_params["fov"] = instrument_spec["fov"]
    event_params["chan_lim"] = [rmf.cmin, rmf.cmax]
    event_params["chips"] = instrument_spec["chips"]
    event_params["dither_params"] = dither_dict
    event_params["aimpt_coords"] = instrument_spec["aimpt_coords"]

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN","DEC--TAN"]
    w.wcs.cunit = ["deg"]*2

    rot_mat = get_rot_mat(roll_angle)

    all_events = defaultdict(list)

    for i, evts in enumerate(event_list):

        mylog.info("Detecting events from source %s." % parameters["sources"][i])

        # Step 1: Use ARF to determine which photons are observed

        mylog.info("Applying energy-dependent effective area from %s." % os.path.split(arf.filename)[-1])
        refband = [parameters["emin"][i], parameters["emax"][i]]
        events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0,:] + event_params["aimpt_coords"][0]
            dety = det[1,:] + event_params["aimpt_coords"][1]

            # Add times to events
            events['time'] = prng.uniform(size=n_evt, low=0.0,
                                          high=event_params["exposure_time"])

            # Apply dithering

            x_offset, y_offset = perform_dither(events["time"], dither_dict)

            detx -= x_offset
            dety -= y_offset

            # PSF scattering of detector coordinates

            if instrument_spec["psf"] is not None:
                psf_type, psf_spec = instrument_spec["psf"]
                if psf_type == "gaussian":
                    sigma = psf_spec/sigma_to_fwhm/plate_scale_arcsec
                    detx += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                    dety += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                else:
                    raise NotImplementedError("PSF type %s not implemented!" % psf_type)

            # Convert detector coordinates to chip coordinates.
            # Throw out events that don't fall on any chip.

            cx = np.trunc(detx)+0.5*np.sign(detx)
            cy = np.trunc(dety)+0.5*np.sign(dety)

            if event_params["chips"] is None:
                events["chip_id"] = np.zeros(n_evt, dtype='int')
                keepx = np.logical_and(cx >= -0.5*nx, cx <= 0.5*nx)
                keepy = np.logical_and(cy >= -0.5*nx, cy <= 0.5*nx)
                keep = np.logical_and(keepx, keepy)
            else:
                events["chip_id"] = -np.ones(n_evt, dtype='int')
                for i, chip in enumerate(event_params["chips"]):
                    thisc = np.ones(n_evt, dtype='bool')
                    rtype = chip[0]
                    args = chip[1:]
                    r = getattr(rfilter, rtype)(*args)
                    inside = r.inside(cx, cy)
                    thisc = np.logical_and(thisc, inside)
                    events["chip_id"][thisc] = i
                keep = events["chip_id"] > -1

            mylog.info("%d events were rejected because " % (n_evt-keep.sum()) +
                       "they do not fall on any CCD.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning("No events are within the field of view for this source!!!")
            else:

                # Keep only those events which fall on a chip

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates, unless the
                # user has specified that they want subpixel resolution

                if subpixel_res:
                    events["detx"] = detx[keep]
                    events["dety"] = dety[keep]
                else:
                    events["detx"] = cx[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)
                    events["dety"] = cy[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)

                # Convert detector coordinates back to pixel coordinates by
                # adding the dither offsets back in and applying the rotation
                # matrix again

                det = np.array([events["detx"] + x_offset[keep] - event_params["aimpt_coords"][0],
                                events["dety"] + y_offset[keep] - event_params["aimpt_coords"][1]])
                pix = np.dot(rot_mat.T, det)

                events["xpix"] = pix[0,:] + event_params['pix_center'][0]
                events["ypix"] = pix[1,:] + event_params['pix_center'][1]

        if n_evt > 0:
            for key in events:
                all_events[key] = np.concatenate([all_events[key], events[key]])

    if len(all_events["energy"]) == 0:
        mylog.warning("No events from any of the sources in the catalog were detected!")
        for key in ["xpix", "ypix", "detx", "dety", "time", "chip_id", event_params["channel_type"]]:
            all_events[key] = np.array([])
    else:
        # Step 4: Scatter energies with RMF
        mylog.info("Scattering energies with RMF %s." % os.path.split(rmf.filename)[-1])
        all_events = rmf.scatter_energies(all_events, prng=prng)

    return all_events, event_params
Example #13
0
def test_annulus():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    r_in = 10.0
    r_out = 30.0

    e = spec.generate_energies(exp_time, area, prng=prng)

    ann_src = AnnulusModel(ra0, dec0, r_in, r_out, e.size, prng=prng)

    write_photon_list("ann",
                      "ann",
                      e.flux,
                      ann_src.ra,
                      ann_src.dec,
                      e,
                      overwrite=True)

    instrument_simulator("ann_simput.fits",
                         "ann_evt.fits",
                         exp_time,
                         "hdxi", [ra0, dec0],
                         ptsrc_bkgnd=False,
                         instr_bkgnd=False,
                         foreground=False,
                         prng=prng)

    inst = get_instrument_from_registry("hdxi")
    arf = AuxiliaryResponseFile(inst["arf"])
    cspec = ConvolvedSpectrum(spec, arf)
    ph_flux = cspec.get_flux_in_band(0.5, 7.0)[0].value
    S0 = ph_flux / (np.pi * (r_out**2 - r_in**2))

    write_radial_profile("ann_evt.fits",
                         "ann_evt_profile.fits", [ra0, dec0],
                         1.1 * r_in,
                         0.9 * r_out,
                         100,
                         ctr_type="celestial",
                         emin=0.5,
                         emax=7.0,
                         overwrite=True)

    load_data(1, "ann_evt_profile.fits", 3, ["RMID", "SUR_BRI", "SUR_BRI_ERR"])
    set_stat("chi2")
    set_method("levmar")
    set_source("const1d.src")
    src.c0 = 0.8 * S0

    fit()
    set_covar_opt("sigma", 1.645)
    covar()
    res = get_covar_results()

    assert np.abs(res.parvals[0] - S0) < res.parmaxes[0]

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Example #14
0
def test_beta_model():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    r_c = 20.0
    beta = 1.0

    exp_time = Quantity(500.0, "ks")

    e = spec.generate_energies(exp_time, area, prng=prng)

    beta_src = BetaModel(ra0, dec0, r_c, beta, e.size, prng=prng)

    write_photon_list("beta",
                      "beta",
                      e.flux,
                      beta_src.ra,
                      beta_src.dec,
                      e,
                      overwrite=True)

    instrument_simulator("beta_simput.fits",
                         "beta_evt.fits",
                         exp_time,
                         "hdxi", [ra0, dec0],
                         ptsrc_bkgnd=False,
                         instr_bkgnd=False,
                         foreground=False,
                         prng=prng)

    inst = get_instrument_from_registry("hdxi")
    arf = AuxiliaryResponseFile(inst["arf"])
    cspec = ConvolvedSpectrum(spec, arf)
    ph_flux = cspec.get_flux_in_band(0.5, 7.0)[0].value
    S0 = 3.0 * ph_flux / (2.0 * np.pi * r_c * r_c)

    write_radial_profile("beta_evt.fits",
                         "beta_evt_profile.fits", [ra0, dec0],
                         0.0,
                         100.0,
                         200,
                         ctr_type="celestial",
                         emin=0.5,
                         emax=7.0,
                         overwrite=True)

    load_data(1, "beta_evt_profile.fits", 3,
              ["RMID", "SUR_BRI", "SUR_BRI_ERR"])
    set_stat("chi2")
    set_method("levmar")
    set_source("beta1d.src")
    src.beta = 1.0
    src.r0 = 10.0
    src.ampl = 0.8 * S0
    freeze(src.xpos)

    fit()
    set_covar_opt("sigma", 1.645)
    covar()
    res = get_covar_results()

    assert np.abs(res.parvals[0] - r_c) < res.parmaxes[0]
    assert np.abs(res.parvals[1] - beta) < res.parmaxes[1]
    assert np.abs(res.parvals[2] - S0) < res.parmaxes[2]

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Example #15
0
 def arf(self):
     if self._arf is None:
         self._arf = AuxiliaryResponseFile(self.arf_file)
     return self._arf
Example #16
0
File: events.py Project: eblur/soxs
def make_exposure_map(event_file,
                      expmap_file,
                      energy,
                      weights=None,
                      asol_file=None,
                      normalize=True,
                      overwrite=False,
                      nhistx=16,
                      nhisty=16):
    """
    Make an exposure map for a SOXS event file, and optionally write
    an aspect solution file. The exposure map will be created by
    binning an aspect histogram over the range of the aspect solution.

    Parameters
    ----------
    event_file : string
        The path to the event file to use for making the exposure map.
    expmap_file : string
        The path to write the exposure map file to.
    energy : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, or NumPy array
        The energy in keV to use when computing the exposure map, or 
        a set of energies to be used with the *weights* parameter. If
        providing a set, it must be in keV.
    weights : array-like, optional
        The weights to use with a set of energies given in the
        *energy* parameter. Used to create a more accurate exposure
        map weighted by a range of energies. Default: None
    asol_file : string, optional
        The path to write the aspect solution file to, if desired.
        Default: None
    normalize : boolean, optional
        If True, the exposure map will be divided by the exposure time
        so that the map's units are cm**2. Default: True
    overwrite : boolean, optional
        Whether or not to overwrite an existing file. Default: False
    nhistx : integer, optional
        The number of bins in the aspect histogram in the DETX
        direction. Default: 16
    nhisty : integer, optional
        The number of bins in the aspect histogram in the DETY
        direction. Default: 16
    """
    import pyregion._region_filter as rfilter
    from scipy.ndimage.interpolation import rotate, shift
    from soxs.instrument import AuxiliaryResponseFile, perform_dither
    if isinstance(energy, np.ndarray) and weights is None:
        raise RuntimeError("Must supply a single value for the energy if "
                           "you do not supply weights!")
    if not isinstance(energy, np.ndarray):
        energy = parse_value(energy, "keV")
    f_evt = pyfits.open(event_file)
    hdu = f_evt["EVENTS"]
    arf = AuxiliaryResponseFile(hdu.header["ANCRFILE"])
    exp_time = hdu.header["EXPOSURE"]
    nx = int(hdu.header["TLMAX2"] - 0.5) // 2
    ny = int(hdu.header["TLMAX3"] - 0.5) // 2
    ra0 = hdu.header["TCRVL2"]
    dec0 = hdu.header["TCRVL3"]
    xdel = hdu.header["TCDLT2"]
    ydel = hdu.header["TCDLT3"]
    x0 = hdu.header["TCRPX2"]
    y0 = hdu.header["TCRPX3"]
    xdet0 = 0.5 * (2 * nx + 1)
    ydet0 = 0.5 * (2 * ny + 1)
    xaim = hdu.header.get("AIMPT_X", 0.0)
    yaim = hdu.header.get("AIMPT_Y", 0.0)
    roll = hdu.header["ROLL_PNT"]
    instr = instrument_registry[hdu.header["INSTRUME"].lower()]
    dither_params = {}
    if "DITHXAMP" in hdu.header:
        dither_params["x_amp"] = hdu.header["DITHXAMP"]
        dither_params["y_amp"] = hdu.header["DITHYAMP"]
        dither_params["x_period"] = hdu.header["DITHXPER"]
        dither_params["y_period"] = hdu.header["DITHYPER"]
        dither_params["plate_scale"] = ydel * 3600.0
        dither_params["dither_on"] = True
    else:
        dither_params["dither_on"] = False
    f_evt.close()

    # Create time array for aspect solution
    dt = 1.0  # Seconds
    t = np.arange(0.0, exp_time + dt, dt)

    # Construct WCS
    w = pywcs.WCS(naxis=2)
    w.wcs.crval = [ra0, dec0]
    w.wcs.crpix = [x0, y0]
    w.wcs.cdelt = [xdel, ydel]
    w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
    w.wcs.cunit = ["deg"] * 2

    # Create aspect solution if we had dithering.
    # otherwise just set the offsets to zero
    if dither_params["dither_on"]:
        x_off, y_off = perform_dither(t, dither_params)
        # Make the aspect histogram
        x_amp = dither_params["x_amp"] / dither_params["plate_scale"]
        y_amp = dither_params["y_amp"] / dither_params["plate_scale"]
        x_edges = np.linspace(-x_amp, x_amp, nhistx + 1, endpoint=True)
        y_edges = np.linspace(-y_amp, y_amp, nhisty + 1, endpoint=True)
        asphist = np.histogram2d(x_off, y_off, (x_edges, y_edges))[0]
        asphist *= dt
        x_mid = 0.5 * (x_edges[1:] + x_edges[:-1])
        y_mid = 0.5 * (y_edges[1:] + y_edges[:-1])

    # Determine the effective area
    eff_area = arf.interpolate_area(energy).value
    if weights is not None:
        eff_area = np.average(eff_area, weights=weights)

    if instr["chips"] is None:
        rtypes = ["Box"]
        args = [[0.0, 0.0, instr["num_pixels"], instr["num_pixels"]]]
    else:
        rtypes = []
        args = []
        for i, chip in enumerate(instr["chips"]):
            rtypes.append(chip[0])
            args.append(np.array(chip[1:]))

    tmpmap = np.zeros((2 * nx, 2 * ny))

    for rtype, arg in zip(rtypes, args):
        rfunc = getattr(rfilter, rtype)
        new_args = parse_region_args(rtype, arg, xdet0 - xaim - 1.0,
                                     ydet0 - yaim - 1.0)
        r = rfunc(*new_args)
        tmpmap += r.mask(tmpmap).astype("float64")

    if dither_params["dither_on"]:
        expmap = np.zeros((2 * nx, 2 * ny))
        niter = nhistx * nhisty
        pbar = tqdm(leave=True, total=niter, desc="Creating exposure map ")
        for i in range(nhistx):
            for j in range(nhisty):
                expmap += shift(tmpmap,
                                (x_mid[i], y_mid[j]), order=0) * asphist[i, j]
            pbar.update(nhisty)
        pbar.close()
    else:
        expmap = tmpmap * exp_time

    expmap *= eff_area
    if normalize:
        expmap /= exp_time

    if roll != 0.0:
        rotate(expmap, roll, output=expmap, reshape=False)

    map_header = {
        "EXPOSURE": exp_time,
        "MTYPE1": "EQPOS",
        "MFORM1": "RA,DEC",
        "CTYPE1": "RA---TAN",
        "CTYPE2": "DEC--TAN",
        "CRVAL1": ra0,
        "CRVAL2": dec0,
        "CUNIT1": "deg",
        "CUNIT2": "deg",
        "CDELT1": xdel,
        "CDELT2": ydel,
        "CRPIX1": x0,
        "CRPIX2": y0
    }

    map_hdu = pyfits.ImageHDU(expmap, header=pyfits.Header(map_header))
    map_hdu.name = "EXPMAP"
    map_hdu.writeto(expmap_file, overwrite=overwrite)

    if asol_file is not None:

        if dither_params["dither_on"]:

            det = np.array([x_off, y_off])

            pix = np.dot(get_rot_mat(roll).T, det)

            ra, dec = w.wcs_pix2world(pix[0, :] + x0, pix[1, :] + y0, 1)

            col_t = pyfits.Column(name='time', format='D', unit='s', array=t)
            col_ra = pyfits.Column(name='ra', format='D', unit='deg', array=ra)
            col_dec = pyfits.Column(name='dec',
                                    format='D',
                                    unit='deg',
                                    array=dec)

            coldefs = pyfits.ColDefs([col_t, col_ra, col_dec])
            tbhdu = pyfits.BinTableHDU.from_columns(coldefs)
            tbhdu.name = "ASPSOL"
            tbhdu.header["EXPOSURE"] = exp_time

            hdulist = [pyfits.PrimaryHDU(), tbhdu]

            pyfits.HDUList(hdulist).writeto(asol_file, overwrite=overwrite)

        else:

            mylog.warning("Refusing to write an aspect solution file because "
                          "there was no dithering.")
Example #17
0

def setup():
    from yt.config import ytcfg
    ytcfg["yt", "__withintesting"] = "True"


try:
    make_simple_instrument("acisi_cy19", "sq_acisi_cy19", 20.0, 2400)
except KeyError:
    pass

acis_spec = get_instrument_from_registry("sq_acisi_cy19")

rmf = RedistributionMatrixFile(acis_spec["rmf"])
arf = AuxiliaryResponseFile(acis_spec['arf'])


def mymodel(pars, x, xhi=None):
    dx = x[1] - x[0]
    xmid = x + 0.5 * dx
    wm = WabsModel(pars[0])
    wabs = wm.get_absorb(xmid)
    plaw = pars[1] * dx * (xmid * (1.0 + pars[2]))**(-pars[3])
    return wabs * plaw


@requires_module("sherpa")
def test_power_law():
    plaw_fit(1.1, prng=29)
    plaw_fit(0.8)
Example #18
0
def simulate_spectrum(spec,
                      instrument,
                      exp_time,
                      out_file,
                      overwrite=False,
                      prng=None):
    """
    Generate a PI or PHA spectrum from a :class:`~soxs.spectra.Spectrum`
    by convolving it with responses. To be used if one wants to 
    create a spectrum without worrying about spatial response. Similar
    to XSPEC's "fakeit". 

    Parameters
    ----------
    spec : :class:`~soxs.spectra.Spectrum`
        The spectrum to be convolved.
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time in seconds.
    out_file : string
        The file to write the spectrum to.
    overwrite : boolean, optional
        Whether or not to overwrite an existing file. Default: False
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 

    Examples
    --------
    >>> spec = soxs.Spectrum.from_file("my_spectrum.txt")
    >>> soxs.simulate_spectrum(spec, "mucal", 100000.0, 
    ...                        "my_spec.pi", overwrite=True)
    """
    from soxs.events import write_spectrum
    from soxs.instrument import RedistributionMatrixFile, \
        AuxiliaryResponseFile
    from soxs.spectra import ConvolvedSpectrum
    prng = parse_prng(prng)
    exp_time = parse_value(exp_time, "s")
    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" %
                       instrument)
    arf_file = check_file_location(instrument_spec["arf"], "files")
    rmf_file = check_file_location(instrument_spec["rmf"], "files")
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)
    cspec = ConvolvedSpectrum(spec, arf)
    events = {}
    events["energy"] = cspec.generate_energies(exp_time, prng=prng).value
    events = rmf.scatter_energies(events, prng=prng)
    events["arf"] = arf.filename
    events["rmf"] = rmf.filename
    events["exposure_time"] = exp_time
    events["channel_type"] = rmf.header["CHANTYPE"]
    events["telescope"] = rmf.header["TELESCOP"]
    events["instrument"] = rmf.header["INSTRUME"]
    events["mission"] = rmf.header.get("MISSION", "")
    write_spectrum(events, out_file, overwrite=overwrite)