def main(): progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() myid = mpi.mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi.mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: sp_global_def.ERROR("Incomplete list of arguments", "sxproj_stability.main", 1, myid=myid) return if not options.MPI: sp_global_def.ERROR("Non-MPI not supported!", "sxproj_stability.main", 1, myid=myid) return if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() sp_global_def.BATCH = True img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: sxprint(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in range(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params sxprint(" B number of groups ", myid, " ", len(proj_list_all), time() - st) mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in range(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(list(map(int, temp))) del temp mpi_barrier(MPI_COMM_WORLD) sxprint(" C ", myid, " ", time() - st) if myid == main_node: # Assign the remaining groups to main_node for i in range(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method" ) return from sp_utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in range(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 sxprint(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ sxprint(" B ", myid, " ", time() - st) proj_ang = [0.0] * (nima * 2) for i in range(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] sxprint(" C ", myid, " ", time() - st) asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in range(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi sxprint(" D ", myid, " ", time() - st) #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": sxprint(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") sxprint(" B ", myid, " ", time() - st) proj_params = [] for i in range(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) sxprint(" C ", myid, " ", time() - st) from sp_utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, list(range(img_begin, img_begin + 1))) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list sxprint(" D ", myid, " ", time() - st) else: ERROR("Incorrect projection grouping option") return ########################################################################################################### # Begin stability test from sp_utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from sp_utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in range(len(proj_list)): sxprint(" E ", myid, " ", time() - st) class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from sp_filter import filt_ctf for im in range(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in range(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in range(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from sp_fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in range(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sy_s = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: sxprint(" empty group ", i, refprojdir[i]) aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', list(map(int, members))) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', list(map(float, members))) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', list(map(float, members))) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) sp_global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD)
def main(): from sp_logger import Logger, BaseLogger_Files arglist = [] i = 0 while (i < len(sys.argv)): if sys.argv[i] == '-p4pg': i = i + 2 elif sys.argv[i] == '-p4wd': i = i + 2 else: arglist.append(sys.argv[i]) i = i + 1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_filter=.25 --seed=random_seed" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--focus", type="string", default='', help="bineary 3D mask for focused clustering ") parser.add_option( "--ir", type="int", default=1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option( "--radius", type="int", default=-1, help= "particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)" ) parser.add_option("--maxit", type="int", default=25, help="maximum number of iteration") parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option( "--yr", type="string", default='-1', help= "range for translation search in y direction, search is +/-yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default='0.25', help= "step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr " ) parser.add_option("--delta", type="string", default='2', help="angular step of reference projections") parser.add_option("--an", type="string", default='-1', help="angular neighborhood for local searches") parser.add_option( "--center", type="int", default=0, help= "0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)" ) parser.add_option( "--nassign", type="int", default=1, help= "number of reassignment iterations performed for each angular step (set to 3) " ) parser.add_option( "--nrefine", type="int", default=0, help= "number of alignment iterations performed for each angular step (set to 0)" ) parser.add_option("--CTF", action="store_true", default=False, help="do CTF correction during clustring") parser.add_option( "--stoprnct", type="float", default=3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type="string", default='c1', help="symmetry of the structure ") parser.add_option("--function", type="string", default='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type="int", default=3, help="number of independent run") parser.add_option("--number_of_images_per_group", type="int", default=1000, help="number of groups") parser.add_option( "--low_pass_filter", type="float", default=-1.0, help= "absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type="int", default=64, help="initial image size for sorting") parser.add_option("--unaccounted", action="store_true", default=False, help="reconstruct the unaccounted images") parser.add_option( "--seed", type="int", default=-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type="int", default=500, help="minimum members for identified group") parser.add_option("--sausage", action="store_true", default=False, help="way of filter volume") parser.add_option("--chunk0", type="string", default='', help="chunk0 for computing margin of error") parser.add_option("--chunk1", type="string", default='', help="chunk1 for computing margin of error") parser.add_option( "--PWadjustment", type="string", default='', help= "1-D power spectrum of PDB file used for EM volume power spectrum correction" ) parser.add_option( "--protein_shape", type="string", default='g', help= "protein shape. It defines protein preferred orientation angles. Currently it has g and f two types " ) parser.add_option( "--upscale", type="float", default=0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type="int", default=0, help="optimal window size for data processing") parser.add_option( "--interpolation", type="string", default="4nn", help="3-d reconstruction interpolation method, two options trl and 4nn" ) (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if len(args) > 2: mask_file = args[2] else: mask_file = None orgstack = args[0] masterdir = args[1] sp_global_def.BATCH = True #---initialize MPI related variables nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) mpi_comm = mpi.MPI_COMM_WORLD main_node = 0 # import some utilities from sp_utilities import get_im, bcast_number_to_all, cmdexecute, write_text_file, read_text_file, wrap_mpi_bcast, get_params_proj, write_text_row from sp_applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI from sp_statistics import k_means_match_clusters_asg_new, k_means_stab_bbenum from sp_applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI # Create the main log file from sp_logger import Logger, BaseLogger_Files if myid == main_node: log_main = Logger(BaseLogger_Files()) log_main.prefix = masterdir + "/" else: log_main = None #--- fill input parameters into dictionary named after Constants Constants = {} Constants["stack"] = args[0] Constants["masterdir"] = masterdir Constants["mask3D"] = mask_file Constants["focus3Dmask"] = options.focus Constants["indep_runs"] = options.independent Constants["stoprnct"] = options.stoprnct Constants[ "number_of_images_per_group"] = options.number_of_images_per_group Constants["CTF"] = options.CTF Constants["maxit"] = options.maxit Constants["ir"] = options.ir Constants["radius"] = options.radius Constants["nassign"] = options.nassign Constants["rs"] = options.rs Constants["xr"] = options.xr Constants["yr"] = options.yr Constants["ts"] = options.ts Constants["delta"] = options.delta Constants["an"] = options.an Constants["sym"] = options.sym Constants["center"] = options.center Constants["nrefine"] = options.nrefine #Constants["fourvar"] = options.fourvar Constants["user_func"] = options.function Constants[ "low_pass_filter"] = options.low_pass_filter # enforced low_pass_filter #Constants["debug"] = options.debug Constants["main_log_prefix"] = args[1] #Constants["importali3d"] = options.importali3d Constants["myid"] = myid Constants["main_node"] = main_node Constants["nproc"] = nproc Constants["log_main"] = log_main Constants["nxinit"] = options.nxinit Constants["unaccounted"] = options.unaccounted Constants["seed"] = options.seed Constants["smallest_group"] = options.smallest_group Constants["sausage"] = options.sausage Constants["chunk0"] = options.chunk0 Constants["chunk1"] = options.chunk1 Constants["PWadjustment"] = options.PWadjustment Constants["upscale"] = options.upscale Constants["wn"] = options.wn Constants["3d-interpolation"] = options.interpolation Constants["protein_shape"] = options.protein_shape # ----------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False #Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] #Tracker["upscale"] = 0.5 Tracker[ "applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 #Tracker["lowpass"] = 0.4 #Tracker["falloff"] = 0.2 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"] = False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] =0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from sp_utilities import sample_down_1D_curve, get_initial_ID, remove_small_groups, print_upper_triangular_matrix, print_a_line_with_timestamp from sp_utilities import print_dict, get_resolution_mrk01, partition_to_groups, partition_independent_runs, get_outliers from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack ####------------------------------------------------------------------ # # Get the pixel size; if none, set to 1.0, and the original image size from sp_utilities import get_shrink_data_huang if (myid == main_node): line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" sxprint((line + "Initialization of 3-D sorting")) a = get_im(orgstack) nnxo = a.get_xsize() if (Tracker["nxinit"] > nnxo): sp_global_def.ERROR( "Image size less than minimum permitted $d" % Tracker["nxinit"]) nnxo = -1 else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size / Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0 / nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node=main_node) if (nnxo < 0): return pixel_size = bcast_number_to_all(pixel_size, source_node=main_node) fq = bcast_number_to_all(fq, source_node=main_node) if Tracker["constants"]["wn"] == 0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo = Tracker["constants"]["nnxo"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if (Tracker["constants"]["radius"] < 1): Tracker["constants"][ "radius"] = Tracker["constants"]["nnxo"] // 2 - 2 elif ((2 * Tracker["constants"]["radius"] + 2) > Tracker["constants"]["nnxo"]): sp_global_def.ERROR("Particle radius set too large!", myid=myid) ####----------------------------------------------------------------------------------------- # Master directory if myid == main_node: if masterdir == "": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir = "master_sort3d" + timestring li = len(masterdir) cmd = "{} {}".format("mkdir -p", masterdir) os.system(cmd) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, main_node, mpi.MPI_COMM_WORLD)[0] if li > 0: masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, main_node, mpi.MPI_COMM_WORLD) import string masterdir = string.join(masterdir, "") if myid == main_node: print_dict(Tracker["constants"], "Permanent settings of 3-D sorting program") ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:" + masterdir + "/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["ctf_params"] = os.path.join( masterdir, "ctf_params.txt") Tracker["constants"]["partstack"] = Tracker["constants"][ "ali3d"] # also serves for refinement if myid == main_node: total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack = 0 total_stack = bcast_number_to_all(total_stack, source_node=main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from time import sleep while not os.path.exists(masterdir): sxprint("Node ", myid, " waiting...") sleep(5) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("Sphire sort3d ") log_main.add("the sort3d master directory is " + masterdir) ##### ###---------------------------------------------------------------------------------- # Initial data analysis and handle two chunk files from random import shuffle # Compute the resolution #### make chunkdir dictionary for computing margin of error import sp_user_functions user_func = sp_user_functions.factory[Tracker["constants"] ["user_func"]] chunk_dict = {} chunk_list = [] if myid == main_node: chunk_one = read_text_file(Tracker["constants"]["chunk0"]) chunk_two = read_text_file(Tracker["constants"]["chunk1"]) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ######################## Read/write bdb: data on main node ############################ if myid == main_node: if (orgstack[:4] == "bdb:"): cmd = "{} {} {}".format( "e2bdb.py", orgstack, "--makevstack=" + Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sp_cpy.py", orgstack, Tracker["constants"]["stack"]) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=xform.projection", "--export=" + Tracker["constants"]["ali3d"], orgstack) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=ctf", "--export=" + Tracker["constants"]["ctf_params"], orgstack) junk = cmdexecute(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ########----------------------------------------------------------------------------- Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float( Tracker["nxinit"]) / Tracker["constants"]["nnxo"] Tracker[ "radius"] = Tracker["constants"]["radius"] * Tracker["shrinkage"] if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir, "smask.hdf") else: Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"] = os.path.join(masterdir, "sfocus.hdf") else: Tracker["focus3D"] = None if myid == main_node: if Tracker["constants"]["mask3D"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"], Tracker["constants"]["mask3D"]) mask_3D.write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask( Tracker["nxinit"], Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if (st[0] == 0.0): ERROR( "Incorrect focused mask, after binarize all values zero" ) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"] != '': PW_dict = {} nxinit_pwsp = sample_down_1D_curve( Tracker["constants"]["nxinit"], Tracker["constants"]["nnxo"], Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir, "spwp.txt") if myid == main_node: write_text_file(nxinit_pwsp, Tracker["nxinit_PW"]) PW_dict[Tracker["constants"] ["nnxo"]] = Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict mpi.mpi_barrier(mpi.MPI_COMM_WORLD) #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------### for element in chunk_one: chunk_dict[element] = 0 for element in chunk_two: chunk_dict[element] = 1 chunk_list = [chunk_one, chunk_two] Tracker["chunk_dict"] = chunk_dict Tracker["P_chunk0"] = len(chunk_one) / float(total_stack) Tracker["P_chunk1"] = len(chunk_two) / float(total_stack) ### create two volumes to estimate resolution if myid == main_node: for index in range(2): write_text_file( chunk_list[index], os.path.join(masterdir, "chunk%01d.txt" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) vols = [] for index in range(2): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], os.path.join(masterdir, "chunk%01d.txt" % index), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) vol = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) if myid == main_node: vol.write_image(os.path.join(masterdir, "vol%d.hdf" % index)) vols.append(vol) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: low_pass, falloff, currentres = get_resolution_mrk01( vols, Tracker["constants"]["radius"], Tracker["constants"]["nxinit"], masterdir, Tracker["mask3D"]) if low_pass > Tracker["constants"]["low_pass_filter"]: low_pass = Tracker["constants"]["low_pass_filter"] else: low_pass = 0.0 falloff = 0.0 currentres = 0.0 bcast_number_to_all(currentres, source_node=main_node) bcast_number_to_all(low_pass, source_node=main_node) bcast_number_to_all(falloff, source_node=main_node) Tracker["currentres"] = currentres Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] == -1.0: Tracker["low_pass_filter"] = min( .45, low_pass / Tracker["shrinkage"]) # no better than .45 else: Tracker["low_pass_filter"] = min( .45, Tracker["constants"]["low_pass_filter"] / Tracker["shrinkage"]) Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] = .1 Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt") ############################################################################################ if myid == main_node: log_main.add("The command-line inputs are as following:") log_main.add( "**********************************************************") for a in sys.argv: if myid == main_node: log_main.add(a) if myid == main_node: log_main.add("number of cpus used in this run is %d" % Tracker["constants"]["nproc"]) log_main.add( "**********************************************************") from sp_filter import filt_tanl ### START 3-D sorting if myid == main_node: log_main.add("----------3-D sorting program------- ") log_main.add( "current resolution %6.3f for images of original size in terms of absolute frequency" % Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution" % (Tracker["constants"]["pixel_size"] / Tracker["currentres"] / Tracker["shrinkage"])) log_main.add("the user provided enforced low_pass_filter is %f" % Tracker["constants"]["low_pass_filter"]) #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"])) for index in range(2): filt_tanl( get_im(os.path.join(masterdir, "vol%01d.hdf" % index)), Tracker["low_pass_filter"], Tracker["falloff"]).write_image( os.path.join(masterdir, "volf%01d.hdf" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from sp_utilities import get_input_from_string delta = get_input_from_string(Tracker["constants"]["delta"]) delta = delta[0] from sp_utilities import even_angles n_angles = even_angles(delta, 0, 180) this_ali3d = Tracker["constants"]["ali3d"] sampled = get_stat_proj(Tracker, delta, this_ali3d) if myid == main_node: nc = 0 for a in sampled: if len(sampled[a]) > 0: nc += 1 log_main.add("total sampled direction %10d at angle step %6.3f" % (len(n_angles), delta)) log_main.add( "captured sampled directions %10d percentage covered by data %6.3f" % (nc, float(nc) / len(n_angles) * 100)) number_of_images_per_group = Tracker["constants"][ "number_of_images_per_group"] if myid == main_node: log_main.add("user provided number_of_images_per_group %d" % number_of_images_per_group) Tracker["number_of_images_per_group"] = number_of_images_per_group number_of_groups = get_number_of_groups(total_stack, number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups generation = 0 partition_dict = {} full_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("---- generation %5d" % generation) log_main.add("number of images per group is set as %d" % number_of_images_per_group) log_main.add("the initial number of groups is %10d " % number_of_groups) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) list_to_be_processed = list(range(Tracker["constants"]["total_stack"])) Tracker["this_data_list"] = list_to_be_processed create_random_list(Tracker) ################################# full_dict = {} for iptl in range(Tracker["constants"]["total_stack"]): full_dict[iptl] = iptl Tracker["full_ID_dict"] = full_dict ################################# for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = list_to_be_processed Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_particle_text_file"] = os.path.join( workdir, "independent_list_%03d.txt" % indep_run) # for get_shrink_data if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) ref_vol = apply_low_pass_filter(ref_vol, Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["partition_dict"] = partition_dict Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] from time import sleep number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid == main_node: log_main.add("group %d members %d " % (igrp, len(Tracker["this_data_list"]))) Tracker["number_of_ref_class"] = number_of_ref_class nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"][ "PWadjustment"] # no PW adjustment if myid == main_node: for iref in range(len(ref_vol_list)): refdata = [None] * 4 refdata[0] = ref_vol_list[iref] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir, "volf_stable.hdf"), iref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements( list_to_be_processed, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) update_full_dict(Tracker["this_unaccounted_list"], Tracker) ####################################### number_of_groups = len(res_groups) vol_list = [] number_of_ref_class = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) if (myid == main_node): npergroup = len( read_text_file(os.path.join(outdir, "Class%d.txt" % igrp))) else: npergroup = 0 npergroup = bcast_number_to_all(npergroup, main_node) number_of_ref_class.append(npergroup) Tracker["number_of_ref_class"] = number_of_ref_class mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) Tracker["this_data_list"] = Tracker[ "this_unaccounted_list"] # reset parameters for the next round calculation Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups while number_of_groups >= 2: generation += 1 partition_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("*********************************************") log_main.add("----- generation %5d " % generation) log_main.add("number of images per group is set as %10d " % number_of_images_per_group) log_main.add("the number of groups is %10d " % number_of_groups) log_main.add(" number of particles for clustering is %10d" % Tracker["total_stack"]) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) create_random_list(Tracker) for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] #ref_vol=apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_unaccounted_text"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] total_list_of_this_run = Tracker["this_unaccounted_list"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][ igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid == main_node: volref.write_image(os.path.join(workdir, "vol_stable.hdf"), iref) #volref = resample(volref,Tracker["shrinkage"]) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) # calculate the 3-D structure of original image size for each group number_of_groups = len(res_groups) Tracker["this_unaccounted_list"] = get_complementary_elements( total_list_of_this_run, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) update_full_dict(Tracker["this_unaccounted_list"], Tracker) vol_list = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) del vol_list mpi.mpi_barrier(mpi.MPI_COMM_WORLD) number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) if Tracker["constants"]["unaccounted"]: data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], Tracker["this_unaccounted_text"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if (myid == main_node): refdata = [None] * 4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) volref.write_image( os.path.join(workdir, "volf_unaccounted.hdf")) # Finish program if myid == main_node: log_main.add("sxsort3d finishes") mpi.mpi_barrier(mpi.MPI_COMM_WORLD) return
def main(): arglist = [] for arg in sys.argv: arglist.append(arg) progname = os.path.basename(arglist[0]) usage = progname + " stack ref_vol outdir <maskfile> --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --ynumber=y_numbers --txs=translational_search_stepx --delta=angular_step --an=angular_neighborhood --center=1 --maxit=max_iter --CTF --snr=1.0 --ref_a=S --sym=c1 --datasym=symdoc --new" parser = OptionParser(usage, version=SPARXVERSION) #parser.add_option("--ir", type="float", default= -1, help="inner radius for rotational correlation > 0 (set to 1) (Angstroms)") parser.add_option( "--ou", type="float", default=-1, help= "outer radius for rotational 2D correlation < int(nx/2)-1 (set to the radius of the particle) (Angstroms)" ) parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default=" 4 2 1 1 1", help= "range for translation search in x direction, search is +/-xr (Angstroms) " ) parser.add_option( "--txs", type="string", default="1 1 1 0.5 0.25", help= "step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)" ) parser.add_option( "--y_restrict", type="string", default="-1 -1 -1 -1 -1", help= "range for translational search in y-direction, search is +/-y_restrict in Angstroms. This only applies to local search, i.e., when an is not -1. If y_restrict < 0, then for ihrsrlocalcons (option --localcons local search with consistency), the y search range is set such that it is the same ratio to dp as angular search range is to dphi. For regular ihrsr, y search range is the full range when y_restrict< 0. Default is -1." ) parser.add_option( "--ynumber", type="string", default="4 8 16 32 32", help= "even number of the translation search in y direction, search is (-dpp/2,-dpp/2+dpp/ny,,..,0,..,dpp/2-dpp/ny dpp/2]" ) parser.add_option("--delta", type="string", default=" 10 6 4 3 2", help="angular step of reference projections") parser.add_option( "--an", type="string", default="-1", help= "angular neighborhood for local searches (default -1, meaning do exhaustive search)" ) parser.add_option( "--maxit", type="int", default=30, help= "maximum number of iterations performed for each angular step (default 30) " ) parser.add_option("--CTF", action="store_true", default=False, help="CTF correction") parser.add_option("--snr", type="float", default=1.0, help="Signal-to-Noise Ratio of the data (default 1)") parser.add_option("--MPI", action="store_true", default=True, help="use MPI version") #parser.add_option("--fourvar", action="store_true", default=False, help="compute Fourier variance") parser.add_option("--apix", type="float", default=-1.0, help="pixel size in Angstroms") parser.add_option("--dp", type="float", default=-1.0, help="delta z - translation in Angstroms") parser.add_option("--dphi", type="float", default=-1.0, help="delta phi - rotation in degrees") parser.add_option( "--ndp", type="int", default=12, help= "In symmetrization search, number of delta z steps equals to 2*ndp+1") parser.add_option( "--ndphi", type="int", default=12, help="In symmetrization search,number of dphi steps equas to 2*ndphi+1" ) parser.add_option("--dp_step", type="float", default=0.1, help="delta z (Angstroms) step for symmetrization") parser.add_option("--dphi_step", type="float", default=0.1, help="dphi step for symmetrization") parser.add_option( "--psi_max", type="float", default=10.0, help= "maximum psi - how far rotation in plane can can deviate from 90 or 270 degrees (default 10)" ) parser.add_option("--rmin", type="float", default=0.0, help="minimal radius for hsearch (Angstroms)") parser.add_option("--rmax", type="float", default=80.0, help="maximal radius for hsearch (Angstroms)") parser.add_option("--fract", type="float", default=0.7, help="fraction of the volume used for helical search") parser.add_option("--sym", type="string", default="c1", help="symmetry of the structure") parser.add_option("--function", type="string", default="helical", help="name of the reference preparation function") parser.add_option("--datasym", type="string", default="datasym.txt", help="symdoc") parser.add_option( "--nise", type="int", default=200, help="start symmetrization after nise steps (default 200)") parser.add_option("--npad", type="int", default=2, help="padding size for 3D reconstruction, (default 2)") parser.add_option("--debug", action="store_true", default=False, help="debug") parser.add_option("--new", action="store_true", default=False, help="use rectangular recon and projection version") parser.add_option( "--initial_theta", type="float", default=90.0, help="intial theta for reference projection (default 90)") parser.add_option( "--delta_theta", type="float", default=1.0, help="delta theta for reference projection (default 1.0)") parser.add_option("--WRAP", type="int", default=1, help="do helical wrapping (default 1, meaning yes)") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 5: sxprint("usage: " + usage + "\n") sxprint("Please run '" + progname + " -h' for detailed options") ERROR( "Invalid number of parameters used. please see usage information above." ) return else: # Convert input arguments in the units/format as expected by ihrsr_MPI in applications. if options.apix < 0: ERROR("Please enter pixel size") return rminp = int((float(options.rmin) / options.apix) + 0.5) rmaxp = int((float(options.rmax) / options.apix) + 0.5) from sp_utilities import get_input_from_string, get_im xr = get_input_from_string(options.xr) txs = get_input_from_string(options.txs) y_restrict = get_input_from_string(options.y_restrict) irp = 1 if options.ou < 0: oup = -1 else: oup = int((options.ou / options.apix) + 0.5) xrp = '' txsp = '' y_restrict2 = '' for i in range(len(xr)): xrp += " " + str(float(xr[i]) / options.apix) for i in range(len(txs)): txsp += " " + str(float(txs[i]) / options.apix) # now y_restrict has the same format as x search range .... has to change ihrsr accordingly for i in range(len(y_restrict)): y_restrict2 += " " + str(float(y_restrict[i]) / options.apix) if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() from sp_applications import ihrsr sp_global_def.BATCH = True if len(args) < 4: mask = None else: mask = args[3] ihrsr(args[0], args[1], args[2], mask, irp, oup, options.rs, xrp, options.ynumber, txsp, options.delta, options.initial_theta, options.delta_theta, options.an, options.maxit, options.CTF, options.snr, options.dp, options.ndp, options.dp_step, options.dphi, options.ndphi, options.dphi_step, options.psi_max, rminp, rmaxp, options.fract, options.nise, options.npad, options.sym, options.function, options.datasym, options.apix, options.debug, options.MPI, options.WRAP, y_restrict2) sp_global_def.BATCH = False
def main(): from sp_utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help= "range for translation search in x direction, search is +/xr (default 2,1)" ) parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)" ) parser.add_option("--thld_err", type="float", default=0.7, help="threshld of pixel error (default = 0.75)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option( "--fl", type="float", default=0.45, help= "cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)" ) parser.add_option( "--aa", type="float", default=0.2, help= "fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option("--verbose", action="store_true", default=False, help="print individual pixel error (default = False)") parser.add_option( "--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)") parser.add_option( "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)") (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() from sp_applications import within_group_refinement, ali2d_ras from sp_pixel_error import multi_align_stability from sp_utilities import write_text_file, write_text_row sp_global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx / 2 - 2 from sp_utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF: from sp_filter import filt_ctf for im in range(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in range(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \ maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \ maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method) from sp_utilities import info #print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii) """ avet = class_data[0] from sp_utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1) sxprint("%4s %20s %20s %20s %30s %6.2f" % ("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of", options.thld_err)) sxprint("Average stat: %10d %20d %20.2f %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err)) if (len(stable_set) > 0): if options.stables: stab_mem = [[0, 0.0, 0] for j in range(len(stable_set))] for j in range(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from sp_fundamentals import rot_shift2D avet.to_zero() l = -1 sxprint("average parameters: angle, x-shift, y-shift, mirror") for j in stable_set_id: l += 1 sxprint(" %4d %4d %12.2f %12.2f %12.2f %1d" % (l, j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]))) avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) avet /= (l + 1) avet.set_attr('members', stable_set_id) avet.set_attr('pix_err', pix_err) avet.set_attr('pixerr', particle_pixerr) avet.write_image(args[1]) sp_global_def.BATCH = False