Example #1
0
def main():

    progname = os.path.basename(sys.argv[0])
    usage = progname + " proj_stack output_averages --MPI"
    parser = OptionParser(usage, version=SPARXVERSION)

    parser.add_option("--img_per_group",
                      type="int",
                      default=100,
                      help="number of images per group")
    parser.add_option("--radius",
                      type="int",
                      default=-1,
                      help="radius for alignment")
    parser.add_option(
        "--xr",
        type="string",
        default="2 1",
        help="range for translation search in x direction, search is +/xr")
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help=
        "range for translation search in y direction, search is +/yr (default = same as xr)"
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1 0.5",
        help=
        "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional"
    )
    parser.add_option(
        "--iter",
        type="int",
        default=30,
        help="number of iterations within alignment (default = 30)")
    parser.add_option(
        "--num_ali",
        type="int",
        default=5,
        help="number of alignments performed for stability (default = 5)")
    parser.add_option("--thld_err",
                      type="float",
                      default=1.0,
                      help="threshold of pixel error (default = 1.732)")
    parser.add_option(
        "--grouping",
        type="string",
        default="GRP",
        help=
        "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size"
    )
    parser.add_option(
        "--delta",
        type="float",
        default=-1.0,
        help="angular step for reference projections (required for GEV method)"
    )
    parser.add_option(
        "--fl",
        type="float",
        default=0.3,
        help="cut-off frequency of hyperbolic tangent low-pass Fourier filter")
    parser.add_option(
        "--aa",
        type="float",
        default=0.2,
        help="fall-off of hyperbolic tangent low-pass Fourier filter")
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="Consider CTF correction during the alignment ")
    parser.add_option("--MPI",
                      action="store_true",
                      default=False,
                      help="use MPI version")

    (options, args) = parser.parse_args()

    myid = mpi.mpi_comm_rank(MPI_COMM_WORLD)
    number_of_proc = mpi.mpi_comm_size(MPI_COMM_WORLD)
    main_node = 0

    if len(args) == 2:
        stack = args[0]
        outdir = args[1]
    else:
        sp_global_def.ERROR("Incomplete list of arguments",
                            "sxproj_stability.main",
                            1,
                            myid=myid)
        return
    if not options.MPI:
        sp_global_def.ERROR("Non-MPI not supported!",
                            "sxproj_stability.main",
                            1,
                            myid=myid)
        return

    if sp_global_def.CACHE_DISABLE:
        from sp_utilities import disable_bdb_cache
        disable_bdb_cache()
    sp_global_def.BATCH = True

    img_per_grp = options.img_per_group
    radius = options.radius
    ite = options.iter
    num_ali = options.num_ali
    thld_err = options.thld_err

    xrng = get_input_from_string(options.xr)
    if options.yr == "-1":
        yrng = xrng
    else:
        yrng = get_input_from_string(options.yr)

    step = get_input_from_string(options.ts)

    if myid == main_node:
        nima = EMUtil.get_image_count(stack)
        img = get_image(stack)
        nx = img.get_xsize()
        ny = img.get_ysize()
    else:
        nima = 0
        nx = 0
        ny = 0
    nima = bcast_number_to_all(nima)
    nx = bcast_number_to_all(nx)
    ny = bcast_number_to_all(ny)
    if radius == -1: radius = nx / 2 - 2
    mask = model_circle(radius, nx, nx)

    st = time()
    if options.grouping == "GRP":
        if myid == main_node:
            sxprint("  A  ", myid, "  ", time() - st)
            proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
            proj_params = []
            for i in range(nima):
                dp = proj_attr[i].get_params("spider")
                phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[
                    "psi"], -dp["tx"], -dp["ty"]
                proj_params.append([phi, theta, psi, s2x, s2y])

            # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta,
            # So I will briefly explain it here
            # proj_list  : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers
            #              except for the last one. Depending on the number of particles left, they will either form a
            #              group or append themselves to the last group
            # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi,
            #              theta) is the projection angle of the center of the group, delta is the range of this group
            # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates
            #              whether it should take mirror position.
            # In this program angle_list and mirror list are not of interest.

            proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(
                proj_params, img_per_grp=img_per_grp)
            del proj_params
            sxprint("  B  number of groups  ", myid, "  ", len(proj_list_all),
                    time() - st)
        mpi_barrier(MPI_COMM_WORLD)

        # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies
        # we will simply assign them to main node.
        n_grp = nima / img_per_grp - 1

        # Divide proj_list_all equally to all nodes, and becomes proj_list
        proj_list = []
        for i in range(n_grp):
            proc_to_stay = i % number_of_proc
            if proc_to_stay == main_node:
                if myid == main_node: proj_list.append(proj_list_all[i])
            elif myid == main_node:
                mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT,
                         proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            elif myid == proc_to_stay:
                img_per_grp = mpi_recv(1, MPI_INT, main_node,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                img_per_grp = int(img_per_grp[0])
                temp = mpi_recv(img_per_grp, MPI_INT, main_node,
                                SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                proj_list.append(list(map(int, temp)))
                del temp
            mpi_barrier(MPI_COMM_WORLD)
        sxprint("  C  ", myid, "  ", time() - st)
        if myid == main_node:
            # Assign the remaining groups to main_node
            for i in range(n_grp, len(proj_list_all)):
                proj_list.append(proj_list_all[i])
            del proj_list_all, angle_list, mirror_list

    #   Compute stability per projection projection direction, equal number assigned, thus overlaps
    elif options.grouping == "GEV":

        if options.delta == -1.0:
            ERROR(
                "Angular step for reference projections is required for GEV method"
            )
            return

        from sp_utilities import even_angles, nearestk_to_refdir, getvec
        refproj = even_angles(options.delta)
        img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid)
        # Now each processor keeps its own share of reference projections
        refprojdir = refproj[img_begin:img_end]
        del refproj

        ref_ang = [0.0] * (len(refprojdir) * 2)
        for i in range(len(refprojdir)):
            ref_ang[i * 2] = refprojdir[0][0]
            ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1

        sxprint("  A  ", myid, "  ", time() - st)
        proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
        #  the solution below is very slow, do not use it unless there is a problem with the i/O
        """
		for i in xrange(number_of_proc):
			if myid == i:
				proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
			mpi_barrier(MPI_COMM_WORLD)
		"""
        sxprint("  B  ", myid, "  ", time() - st)

        proj_ang = [0.0] * (nima * 2)
        for i in range(nima):
            dp = proj_attr[i].get_params("spider")
            proj_ang[i * 2] = dp["phi"]
            proj_ang[i * 2 + 1] = dp["theta"]
        sxprint("  C  ", myid, "  ", time() - st)
        asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp)
        del proj_ang, ref_ang
        proj_list = []
        for i in range(len(refprojdir)):
            proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp])
        del asi
        sxprint("  D  ", myid, "  ", time() - st)
        #from sys import exit
        #exit()

    #   Compute stability per projection
    elif options.grouping == "PPR":
        sxprint("  A  ", myid, "  ", time() - st)
        proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
        sxprint("  B  ", myid, "  ", time() - st)
        proj_params = []
        for i in range(nima):
            dp = proj_attr[i].get_params("spider")
            phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[
                "psi"], -dp["tx"], -dp["ty"]
            proj_params.append([phi, theta, psi, s2x, s2y])
        img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
        sxprint("  C  ", myid, "  ", time() - st)
        from sp_utilities import nearest_proj
        proj_list, mirror_list = nearest_proj(
            proj_params, img_per_grp,
            list(range(img_begin, img_begin + 1)))  #range(img_begin, img_end))
        refprojdir = proj_params[img_begin:img_end]
        del proj_params, mirror_list
        sxprint("  D  ", myid, "  ", time() - st)

    else:
        ERROR("Incorrect projection grouping option")
        return

    ###########################################################################################################
    # Begin stability test
    from sp_utilities import get_params_proj, read_text_file
    #if myid == 0:
    #	from utilities import read_text_file
    #	proj_list[0] = map(int, read_text_file("lggrpp0.txt"))

    from sp_utilities import model_blank
    aveList = [model_blank(nx, ny)] * len(proj_list)
    if options.grouping == "GRP":
        refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list)
    for i in range(len(proj_list)):
        sxprint("  E  ", myid, "  ", time() - st)
        class_data = EMData.read_images(stack, proj_list[i])
        #print "  R  ",myid,"  ",time()-st
        if options.CTF:
            from sp_filter import filt_ctf
            for im in range(len(class_data)):  #  MEM LEAK!!
                atemp = class_data[im].copy()
                btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1)
                class_data[im] = btemp
                #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
        for im in class_data:
            try:
                t = im.get_attr(
                    "xform.align2d")  # if they are there, no need to set them!
            except:
                try:
                    t = im.get_attr("xform.projection")
                    d = t.get_params("spider")
                    set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
                except:
                    set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
        #print "  F  ",myid,"  ",time()-st
        # Here, we perform realignment num_ali times
        all_ali_params = []
        for j in range(num_ali):
            if (xrng[0] == 0.0 and yrng[0] == 0.0):
                avet = ali2d_ras(class_data,
                                 randomize=True,
                                 ir=1,
                                 ou=radius,
                                 rs=1,
                                 step=1.0,
                                 dst=90.0,
                                 maxit=ite,
                                 check_mirror=True,
                                 FH=options.fl,
                                 FF=options.aa)
            else:
                avet = within_group_refinement(class_data, mask, True, 1,
                                               radius, 1, xrng, yrng, step,
                                               90.0, ite, options.fl,
                                               options.aa)
            ali_params = []
            for im in range(len(class_data)):
                alpha, sx, sy, mirror, scale = get_params2D(class_data[im])
                ali_params.extend([alpha, sx, sy, mirror])
            all_ali_params.append(ali_params)
        #aveList[i] = avet
        #print "  G  ",myid,"  ",time()-st
        del ali_params
        # We determine the stability of this group here.
        # stable_set contains all particles deemed stable, it is a list of list
        # each list has two elements, the first is the pixel error, the second is the image number
        # stable_set is sorted based on pixel error
        #from utilities import write_text_file
        #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid)
        stable_set, mir_stab_rate, average_pix_err = multi_align_stability(
            all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1)
        #print "  H  ",myid,"  ",time()-st
        if (len(stable_set) > 5):
            stable_set_id = []
            members = []
            pix_err = []
            # First put the stable members into attr 'members' and 'pix_err'
            for s in stable_set:
                # s[1] - number in this subset
                stable_set_id.append(s[1])
                # the original image number
                members.append(proj_list[i][s[1]])
                pix_err.append(s[0])
            # Then put the unstable members into attr 'members' and 'pix_err'
            from sp_fundamentals import rot_shift2D
            avet.to_zero()
            if options.grouping == "GRP":
                aphi = 0.0
                atht = 0.0
                vphi = 0.0
                vtht = 0.0
            l = -1
            for j in range(len(proj_list[i])):
                #  Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses
                if j in stable_set_id:
                    l += 1
                    avet += rot_shift2D(class_data[j], stable_set[l][2][0],
                                        stable_set[l][2][1],
                                        stable_set[l][2][2],
                                        stable_set[l][2][3])
                    if options.grouping == "GRP":
                        phi, theta, psi, sxs, sy_s = get_params_proj(
                            class_data[j])
                        if (theta > 90.0):
                            phi = (phi + 540.0) % 360.0
                            theta = 180.0 - theta
                        aphi += phi
                        atht += theta
                        vphi += phi * phi
                        vtht += theta * theta
                else:
                    members.append(proj_list[i][j])
                    pix_err.append(99999.99)
            aveList[i] = avet.copy()
            if l > 1:
                l += 1
                aveList[i] /= l
                if options.grouping == "GRP":
                    aphi /= l
                    atht /= l
                    vphi = (vphi - l * aphi * aphi) / l
                    vtht = (vtht - l * atht * atht) / l
                    from math import sqrt
                    refprojdir[i] = [
                        aphi, atht,
                        (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0
                    ]

            # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION
            aveList[i].set_attr('members', members)
            aveList[i].set_attr('refprojdir', refprojdir[i])
            aveList[i].set_attr('pixerr', pix_err)
        else:
            sxprint(" empty group ", i, refprojdir[i])
            aveList[i].set_attr('members', [-1])
            aveList[i].set_attr('refprojdir', refprojdir[i])
            aveList[i].set_attr('pixerr', [99999.])

    del class_data

    if myid == main_node:
        km = 0
        for i in range(number_of_proc):
            if i == main_node:
                for im in range(len(aveList)):
                    aveList[im].write_image(args[1], km)
                    km += 1
            else:
                nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                              MPI_COMM_WORLD)
                nl = int(nl[0])
                for im in range(nl):
                    ave = recv_EMData(i, im + i + 70000)
                    nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                                  MPI_COMM_WORLD)
                    nm = int(nm[0])
                    members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                                       MPI_COMM_WORLD)
                    ave.set_attr('members', list(map(int, members)))
                    members = mpi_recv(nm, MPI_FLOAT, i,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    ave.set_attr('pixerr', list(map(float, members)))
                    members = mpi_recv(3, MPI_FLOAT, i,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    ave.set_attr('refprojdir', list(map(float, members)))
                    ave.write_image(args[1], km)
                    km += 1
    else:
        mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL,
                 MPI_COMM_WORLD)
        for im in range(len(aveList)):
            send_EMData(aveList[im], main_node, im + myid + 70000)
            members = aveList[im].get_attr('members')
            mpi_send(len(members), 1, MPI_INT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            mpi_send(members, len(members), MPI_INT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            members = aveList[im].get_attr('pixerr')
            mpi_send(members, len(members), MPI_FLOAT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            try:
                members = aveList[im].get_attr('refprojdir')
                mpi_send(members, 3, MPI_FLOAT, main_node,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            except:
                mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)

    sp_global_def.BATCH = False
    mpi_barrier(MPI_COMM_WORLD)
Example #2
0
def main():
    from sp_logger import Logger, BaseLogger_Files
    arglist = []
    i = 0
    while (i < len(sys.argv)):
        if sys.argv[i] == '-p4pg':
            i = i + 2
        elif sys.argv[i] == '-p4wd':
            i = i + 2
        else:
            arglist.append(sys.argv[i])
            i = i + 1
    progname = os.path.basename(arglist[0])
    usage = progname + " stack  outdir  <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\
    "--an=angular_neighborhood --maxit=max_iter  --CTF --sym=c1 --function=user_function --independent=indenpendent_runs  --number_of_images_per_group=number_of_images_per_group  --low_pass_filter=.25  --seed=random_seed"
    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option("--focus",
                      type="string",
                      default='',
                      help="bineary 3D mask for focused clustering ")
    parser.add_option(
        "--ir",
        type="int",
        default=1,
        help="inner radius for rotational correlation > 0 (set to 1)")
    parser.add_option(
        "--radius",
        type="int",
        default=-1,
        help=
        "particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)"
    )
    parser.add_option("--maxit",
                      type="int",
                      default=25,
                      help="maximum number of iteration")
    parser.add_option(
        "--rs",
        type="int",
        default=1,
        help="step between rings in rotational correlation >0 (set to 1)")
    parser.add_option(
        "--xr",
        type="string",
        default='1',
        help="range for translation search in x direction, search is +/-xr ")
    parser.add_option(
        "--yr",
        type="string",
        default='-1',
        help=
        "range for translation search in y direction, search is +/-yr (default = same as xr)"
    )
    parser.add_option(
        "--ts",
        type="string",
        default='0.25',
        help=
        "step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr "
    )
    parser.add_option("--delta",
                      type="string",
                      default='2',
                      help="angular step of reference projections")
    parser.add_option("--an",
                      type="string",
                      default='-1',
                      help="angular neighborhood for local searches")
    parser.add_option(
        "--center",
        type="int",
        default=0,
        help=
        "0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)"
    )
    parser.add_option(
        "--nassign",
        type="int",
        default=1,
        help=
        "number of reassignment iterations performed for each angular step (set to 3) "
    )
    parser.add_option(
        "--nrefine",
        type="int",
        default=0,
        help=
        "number of alignment iterations performed for each angular step (set to 0)"
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="do CTF correction during clustring")
    parser.add_option(
        "--stoprnct",
        type="float",
        default=3.0,
        help="Minimum percentage of assignment change to stop the program")
    parser.add_option("--sym",
                      type="string",
                      default='c1',
                      help="symmetry of the structure ")
    parser.add_option("--function",
                      type="string",
                      default='do_volume_mrk05',
                      help="name of the reference preparation function")
    parser.add_option("--independent",
                      type="int",
                      default=3,
                      help="number of independent run")
    parser.add_option("--number_of_images_per_group",
                      type="int",
                      default=1000,
                      help="number of groups")
    parser.add_option(
        "--low_pass_filter",
        type="float",
        default=-1.0,
        help=
        "absolute frequency of low-pass filter for 3d sorting on the original image size"
    )
    parser.add_option("--nxinit",
                      type="int",
                      default=64,
                      help="initial image size for sorting")
    parser.add_option("--unaccounted",
                      action="store_true",
                      default=False,
                      help="reconstruct the unaccounted images")
    parser.add_option(
        "--seed",
        type="int",
        default=-1,
        help="random seed for create initial random assignment for EQ Kmeans")
    parser.add_option("--smallest_group",
                      type="int",
                      default=500,
                      help="minimum members for identified group")
    parser.add_option("--sausage",
                      action="store_true",
                      default=False,
                      help="way of filter volume")
    parser.add_option("--chunk0",
                      type="string",
                      default='',
                      help="chunk0 for computing margin of error")
    parser.add_option("--chunk1",
                      type="string",
                      default='',
                      help="chunk1 for computing margin of error")
    parser.add_option(
        "--PWadjustment",
        type="string",
        default='',
        help=
        "1-D power spectrum of PDB file used for EM volume power spectrum correction"
    )
    parser.add_option(
        "--protein_shape",
        type="string",
        default='g',
        help=
        "protein shape. It defines protein preferred orientation angles. Currently it has g and f two types "
    )
    parser.add_option(
        "--upscale",
        type="float",
        default=0.5,
        help=" scaling parameter to adjust the power spectrum of EM volumes")
    parser.add_option("--wn",
                      type="int",
                      default=0,
                      help="optimal window size for data processing")
    parser.add_option(
        "--interpolation",
        type="string",
        default="4nn",
        help="3-d reconstruction interpolation method, two options trl and 4nn"
    )

    (options, args) = parser.parse_args(arglist[1:])

    if len(args) < 1 or len(args) > 4:
        sxprint("Usage: " + usage)
        sxprint("Please run \'" + progname + " -h\' for detailed options")
        ERROR(
            "Invalid number of parameters used. Please see usage information above."
        )
        return

    else:

        if len(args) > 2:
            mask_file = args[2]
        else:
            mask_file = None

        orgstack = args[0]
        masterdir = args[1]
        sp_global_def.BATCH = True
        #---initialize MPI related variables
        nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD)
        myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD)
        mpi_comm = mpi.MPI_COMM_WORLD
        main_node = 0
        # import some utilities
        from sp_utilities import get_im, bcast_number_to_all, cmdexecute, write_text_file, read_text_file, wrap_mpi_bcast, get_params_proj, write_text_row
        from sp_applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI
        from sp_statistics import k_means_match_clusters_asg_new, k_means_stab_bbenum
        from sp_applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI
        # Create the main log file
        from sp_logger import Logger, BaseLogger_Files
        if myid == main_node:
            log_main = Logger(BaseLogger_Files())
            log_main.prefix = masterdir + "/"
        else:
            log_main = None
        #--- fill input parameters into dictionary named after Constants
        Constants = {}
        Constants["stack"] = args[0]
        Constants["masterdir"] = masterdir
        Constants["mask3D"] = mask_file
        Constants["focus3Dmask"] = options.focus
        Constants["indep_runs"] = options.independent
        Constants["stoprnct"] = options.stoprnct
        Constants[
            "number_of_images_per_group"] = options.number_of_images_per_group
        Constants["CTF"] = options.CTF
        Constants["maxit"] = options.maxit
        Constants["ir"] = options.ir
        Constants["radius"] = options.radius
        Constants["nassign"] = options.nassign
        Constants["rs"] = options.rs
        Constants["xr"] = options.xr
        Constants["yr"] = options.yr
        Constants["ts"] = options.ts
        Constants["delta"] = options.delta
        Constants["an"] = options.an
        Constants["sym"] = options.sym
        Constants["center"] = options.center
        Constants["nrefine"] = options.nrefine
        #Constants["fourvar"]            		 = options.fourvar
        Constants["user_func"] = options.function
        Constants[
            "low_pass_filter"] = options.low_pass_filter  # enforced low_pass_filter
        #Constants["debug"]              		 = options.debug
        Constants["main_log_prefix"] = args[1]
        #Constants["importali3d"]        		 = options.importali3d
        Constants["myid"] = myid
        Constants["main_node"] = main_node
        Constants["nproc"] = nproc
        Constants["log_main"] = log_main
        Constants["nxinit"] = options.nxinit
        Constants["unaccounted"] = options.unaccounted
        Constants["seed"] = options.seed
        Constants["smallest_group"] = options.smallest_group
        Constants["sausage"] = options.sausage
        Constants["chunk0"] = options.chunk0
        Constants["chunk1"] = options.chunk1
        Constants["PWadjustment"] = options.PWadjustment
        Constants["upscale"] = options.upscale
        Constants["wn"] = options.wn
        Constants["3d-interpolation"] = options.interpolation
        Constants["protein_shape"] = options.protein_shape
        # -----------------------------------------------------
        #
        # Create and initialize Tracker dictionary with input options
        Tracker = {}
        Tracker["constants"] = Constants
        Tracker["maxit"] = Tracker["constants"]["maxit"]
        Tracker["radius"] = Tracker["constants"]["radius"]
        #Tracker["xr"]             = ""
        #Tracker["yr"]             = "-1"  # Do not change!
        #Tracker["ts"]             = 1
        #Tracker["an"]             = "-1"
        #Tracker["delta"]          = "2.0"
        #Tracker["zoom"]           = True
        #Tracker["nsoft"]          = 0
        #Tracker["local"]          = False
        #Tracker["PWadjustment"]   = Tracker["constants"]["PWadjustment"]
        Tracker["upscale"] = Tracker["constants"]["upscale"]
        #Tracker["upscale"]        = 0.5
        Tracker[
            "applyctf"] = False  #  Should the data be premultiplied by the CTF.  Set to False for local continuous.
        #Tracker["refvol"]         = None
        Tracker["nxinit"] = Tracker["constants"]["nxinit"]
        #Tracker["nxstep"]         = 32
        Tracker["icurrentres"] = -1
        #Tracker["ireachedres"]    = -1
        #Tracker["lowpass"]        = 0.4
        #Tracker["falloff"]        = 0.2
        #Tracker["inires"]         = options.inires  # Now in A, convert to absolute before using
        Tracker["fuse_freq"] = 50  # Now in A, convert to absolute before using
        #Tracker["delpreviousmax"] = False
        #Tracker["anger"]          = -1.0
        #Tracker["shifter"]        = -1.0
        #Tracker["saturatecrit"]   = 0.95
        #Tracker["pixercutoff"]    = 2.0
        #Tracker["directory"]      = ""
        #Tracker["previousoutputdir"] = ""
        #Tracker["eliminated-outliers"] = False
        #Tracker["mainiteration"]  = 0
        #Tracker["movedback"]      = False
        #Tracker["state"]          = Tracker["constants"]["states"][0]
        #Tracker["global_resolution"] =0.0
        Tracker["orgstack"] = orgstack
        #--------------------------------------------------------------------
        # import from utilities
        from sp_utilities import sample_down_1D_curve, get_initial_ID, remove_small_groups, print_upper_triangular_matrix, print_a_line_with_timestamp
        from sp_utilities import print_dict, get_resolution_mrk01, partition_to_groups, partition_independent_runs, get_outliers
        from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params
        from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref
        from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict
        from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack
        ####------------------------------------------------------------------
        #
        # Get the pixel size; if none, set to 1.0, and the original image size
        from sp_utilities import get_shrink_data_huang
        if (myid == main_node):
            line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
            sxprint((line + "Initialization of 3-D sorting"))
            a = get_im(orgstack)
            nnxo = a.get_xsize()
            if (Tracker["nxinit"] > nnxo):
                sp_global_def.ERROR(
                    "Image size less than minimum permitted $d" %
                    Tracker["nxinit"])
                nnxo = -1
            else:
                if Tracker["constants"]["CTF"]:
                    i = a.get_attr('ctf')
                    pixel_size = i.apix
                    fq = pixel_size / Tracker["fuse_freq"]
                else:
                    pixel_size = 1.0
                    #  No pixel size, fusing computed as 5 Fourier pixels
                    fq = 5.0 / nnxo
                    del a
        else:
            nnxo = 0
            fq = 0.0
            pixel_size = 1.0
        nnxo = bcast_number_to_all(nnxo, source_node=main_node)
        if (nnxo < 0):
            return
        pixel_size = bcast_number_to_all(pixel_size, source_node=main_node)
        fq = bcast_number_to_all(fq, source_node=main_node)
        if Tracker["constants"]["wn"] == 0:
            Tracker["constants"]["nnxo"] = nnxo
        else:
            Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"]
            nnxo = Tracker["constants"]["nnxo"]
        Tracker["constants"]["pixel_size"] = pixel_size
        Tracker["fuse_freq"] = fq
        del fq, nnxo, pixel_size
        if (Tracker["constants"]["radius"] < 1):
            Tracker["constants"][
                "radius"] = Tracker["constants"]["nnxo"] // 2 - 2
        elif ((2 * Tracker["constants"]["radius"] + 2) >
              Tracker["constants"]["nnxo"]):
            sp_global_def.ERROR("Particle radius set too large!", myid=myid)


####-----------------------------------------------------------------------------------------
# Master directory
        if myid == main_node:
            if masterdir == "":
                timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime())
                masterdir = "master_sort3d" + timestring
            li = len(masterdir)
            cmd = "{} {}".format("mkdir -p", masterdir)
            os.system(cmd)
        else:
            li = 0
        li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, main_node,
                           mpi.MPI_COMM_WORLD)[0]
        if li > 0:
            masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, main_node,
                                      mpi.MPI_COMM_WORLD)
            import string
            masterdir = string.join(masterdir, "")
        if myid == main_node:
            print_dict(Tracker["constants"],
                       "Permanent settings of 3-D sorting program")
        ######### create a vstack from input stack to the local stack in masterdir
        # stack name set to default
        Tracker["constants"]["stack"] = "bdb:" + masterdir + "/rdata"
        Tracker["constants"]["ali3d"] = os.path.join(masterdir,
                                                     "ali3d_init.txt")
        Tracker["constants"]["ctf_params"] = os.path.join(
            masterdir, "ctf_params.txt")
        Tracker["constants"]["partstack"] = Tracker["constants"][
            "ali3d"]  # also serves for refinement
        if myid == main_node:
            total_stack = EMUtil.get_image_count(Tracker["orgstack"])
        else:
            total_stack = 0
        total_stack = bcast_number_to_all(total_stack, source_node=main_node)
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        from time import sleep
        while not os.path.exists(masterdir):
            sxprint("Node ", myid, "  waiting...")
            sleep(5)
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        if myid == main_node:
            log_main.add("Sphire sort3d ")
            log_main.add("the sort3d master directory is " + masterdir)
        #####
        ###----------------------------------------------------------------------------------
        # Initial data analysis and handle two chunk files
        from random import shuffle
        # Compute the resolution
        #### make chunkdir dictionary for computing margin of error
        import sp_user_functions
        user_func = sp_user_functions.factory[Tracker["constants"]
                                              ["user_func"]]
        chunk_dict = {}
        chunk_list = []
        if myid == main_node:
            chunk_one = read_text_file(Tracker["constants"]["chunk0"])
            chunk_two = read_text_file(Tracker["constants"]["chunk1"])
        else:
            chunk_one = 0
            chunk_two = 0
        chunk_one = wrap_mpi_bcast(chunk_one, main_node)
        chunk_two = wrap_mpi_bcast(chunk_two, main_node)
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        ######################## Read/write bdb: data on main node ############################
        if myid == main_node:
            if (orgstack[:4] == "bdb:"):
                cmd = "{} {} {}".format(
                    "e2bdb.py", orgstack,
                    "--makevstack=" + Tracker["constants"]["stack"])
            else:
                cmd = "{} {} {}".format("sp_cpy.py", orgstack,
                                        Tracker["constants"]["stack"])
            junk = cmdexecute(cmd)
            cmd = "{} {} {}".format(
                "sp_header.py  --params=xform.projection",
                "--export=" + Tracker["constants"]["ali3d"], orgstack)
            junk = cmdexecute(cmd)
            cmd = "{} {} {}".format(
                "sp_header.py  --params=ctf",
                "--export=" + Tracker["constants"]["ctf_params"], orgstack)
            junk = cmdexecute(cmd)
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        ########-----------------------------------------------------------------------------
        Tracker["total_stack"] = total_stack
        Tracker["constants"]["total_stack"] = total_stack
        Tracker["shrinkage"] = float(
            Tracker["nxinit"]) / Tracker["constants"]["nnxo"]
        Tracker[
            "radius"] = Tracker["constants"]["radius"] * Tracker["shrinkage"]
        if Tracker["constants"]["mask3D"]:
            Tracker["mask3D"] = os.path.join(masterdir, "smask.hdf")
        else:
            Tracker["mask3D"] = None
        if Tracker["constants"]["focus3Dmask"]:
            Tracker["focus3D"] = os.path.join(masterdir, "sfocus.hdf")
        else:
            Tracker["focus3D"] = None
        if myid == main_node:
            if Tracker["constants"]["mask3D"]:
                mask_3D = get_shrink_3dmask(Tracker["nxinit"],
                                            Tracker["constants"]["mask3D"])
                mask_3D.write_image(Tracker["mask3D"])
            if Tracker["constants"]["focus3Dmask"]:
                mask_3D = get_shrink_3dmask(
                    Tracker["nxinit"], Tracker["constants"]["focus3Dmask"])
                st = Util.infomask(mask_3D, None, True)
                if (st[0] == 0.0):
                    ERROR(
                        "Incorrect focused mask, after binarize all values zero"
                    )
                mask_3D.write_image(Tracker["focus3D"])
                del mask_3D
        if Tracker["constants"]["PWadjustment"] != '':
            PW_dict = {}
            nxinit_pwsp = sample_down_1D_curve(
                Tracker["constants"]["nxinit"], Tracker["constants"]["nnxo"],
                Tracker["constants"]["PWadjustment"])
            Tracker["nxinit_PW"] = os.path.join(masterdir, "spwp.txt")
            if myid == main_node:
                write_text_file(nxinit_pwsp, Tracker["nxinit_PW"])
            PW_dict[Tracker["constants"]
                    ["nnxo"]] = Tracker["constants"]["PWadjustment"]
            PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"]
            Tracker["PW_dict"] = PW_dict
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------###
        for element in chunk_one:
            chunk_dict[element] = 0
        for element in chunk_two:
            chunk_dict[element] = 1
        chunk_list = [chunk_one, chunk_two]
        Tracker["chunk_dict"] = chunk_dict
        Tracker["P_chunk0"] = len(chunk_one) / float(total_stack)
        Tracker["P_chunk1"] = len(chunk_two) / float(total_stack)
        ### create two volumes to estimate resolution
        if myid == main_node:
            for index in range(2):
                write_text_file(
                    chunk_list[index],
                    os.path.join(masterdir, "chunk%01d.txt" % index))
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        vols = []
        for index in range(2):
            data, old_shifts = get_shrink_data_huang(
                Tracker,
                Tracker["constants"]["nxinit"],
                os.path.join(masterdir, "chunk%01d.txt" % index),
                Tracker["constants"]["partstack"],
                myid,
                main_node,
                nproc,
                preshift=True)
            vol = recons3d_4nn_ctf_MPI(myid=myid,
                                       prjlist=data,
                                       symmetry=Tracker["constants"]["sym"],
                                       finfo=None)
            if myid == main_node:
                vol.write_image(os.path.join(masterdir, "vol%d.hdf" % index))
            vols.append(vol)
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        if myid == main_node:
            low_pass, falloff, currentres = get_resolution_mrk01(
                vols, Tracker["constants"]["radius"],
                Tracker["constants"]["nxinit"], masterdir, Tracker["mask3D"])
            if low_pass > Tracker["constants"]["low_pass_filter"]:
                low_pass = Tracker["constants"]["low_pass_filter"]
        else:
            low_pass = 0.0
            falloff = 0.0
            currentres = 0.0
        bcast_number_to_all(currentres, source_node=main_node)
        bcast_number_to_all(low_pass, source_node=main_node)
        bcast_number_to_all(falloff, source_node=main_node)
        Tracker["currentres"] = currentres
        Tracker["falloff"] = falloff
        if Tracker["constants"]["low_pass_filter"] == -1.0:
            Tracker["low_pass_filter"] = min(
                .45, low_pass / Tracker["shrinkage"])  # no better than .45
        else:
            Tracker["low_pass_filter"] = min(
                .45,
                Tracker["constants"]["low_pass_filter"] / Tracker["shrinkage"])
        Tracker["lowpass"] = Tracker["low_pass_filter"]
        Tracker["falloff"] = .1
        Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt")
        ############################################################################################
        if myid == main_node:
            log_main.add("The command-line inputs are as following:")
            log_main.add(
                "**********************************************************")
        for a in sys.argv:
            if myid == main_node: log_main.add(a)
        if myid == main_node:
            log_main.add("number of cpus used in this run is %d" %
                         Tracker["constants"]["nproc"])
            log_main.add(
                "**********************************************************")
        from sp_filter import filt_tanl
        ### START 3-D sorting
        if myid == main_node:
            log_main.add("----------3-D sorting  program------- ")
            log_main.add(
                "current resolution %6.3f for images of original size in terms of absolute frequency"
                % Tracker["currentres"])
            log_main.add("equivalent to %f Angstrom resolution" %
                         (Tracker["constants"]["pixel_size"] /
                          Tracker["currentres"] / Tracker["shrinkage"]))
            log_main.add("the user provided enforced low_pass_filter is %f" %
                         Tracker["constants"]["low_pass_filter"])
            #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"]))
            for index in range(2):
                filt_tanl(
                    get_im(os.path.join(masterdir, "vol%01d.hdf" % index)),
                    Tracker["low_pass_filter"],
                    Tracker["falloff"]).write_image(
                        os.path.join(masterdir, "volf%01d.hdf" % index))
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        from sp_utilities import get_input_from_string
        delta = get_input_from_string(Tracker["constants"]["delta"])
        delta = delta[0]
        from sp_utilities import even_angles
        n_angles = even_angles(delta, 0, 180)
        this_ali3d = Tracker["constants"]["ali3d"]
        sampled = get_stat_proj(Tracker, delta, this_ali3d)
        if myid == main_node:
            nc = 0
            for a in sampled:
                if len(sampled[a]) > 0:
                    nc += 1
            log_main.add("total sampled direction %10d  at angle step %6.3f" %
                         (len(n_angles), delta))
            log_main.add(
                "captured sampled directions %10d percentage covered by data  %6.3f"
                % (nc, float(nc) / len(n_angles) * 100))
        number_of_images_per_group = Tracker["constants"][
            "number_of_images_per_group"]
        if myid == main_node:
            log_main.add("user provided number_of_images_per_group %d" %
                         number_of_images_per_group)
        Tracker["number_of_images_per_group"] = number_of_images_per_group
        number_of_groups = get_number_of_groups(total_stack,
                                                number_of_images_per_group)
        Tracker["number_of_groups"] = number_of_groups
        generation = 0
        partition_dict = {}
        full_dict = {}
        workdir = os.path.join(masterdir, "generation%03d" % generation)
        Tracker["this_dir"] = workdir
        if myid == main_node:
            log_main.add("---- generation         %5d" % generation)
            log_main.add("number of images per group is set as %d" %
                         number_of_images_per_group)
            log_main.add("the initial number of groups is  %10d " %
                         number_of_groups)
            cmd = "{} {}".format("mkdir", workdir)
            os.system(cmd)
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        list_to_be_processed = list(range(Tracker["constants"]["total_stack"]))
        Tracker["this_data_list"] = list_to_be_processed
        create_random_list(Tracker)
        #################################
        full_dict = {}
        for iptl in range(Tracker["constants"]["total_stack"]):
            full_dict[iptl] = iptl
        Tracker["full_ID_dict"] = full_dict
        #################################
        for indep_run in range(Tracker["constants"]["indep_runs"]):
            Tracker["this_particle_list"] = Tracker["this_indep_list"][
                indep_run]
            ref_vol = recons_mref(Tracker)
            if myid == main_node:
                log_main.add("independent run  %10d" % indep_run)
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            Tracker["this_data_list"] = list_to_be_processed
            Tracker["total_stack"] = len(Tracker["this_data_list"])
            Tracker["this_particle_text_file"] = os.path.join(
                workdir,
                "independent_list_%03d.txt" % indep_run)  # for get_shrink_data
            if myid == main_node:
                write_text_file(Tracker["this_data_list"],
                                Tracker["this_particle_text_file"])
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run)
            ref_vol = apply_low_pass_filter(ref_vol, Tracker)
            mref_ali3d_EQ_Kmeans(ref_vol, outdir,
                                 Tracker["this_particle_text_file"], Tracker)
            partition_dict[indep_run] = Tracker["this_partition"]
        Tracker["partition_dict"] = partition_dict
        Tracker["total_stack"] = len(Tracker["this_data_list"])
        Tracker["this_total_stack"] = Tracker["total_stack"]
        ###############################
        do_two_way_comparison(Tracker)
        ###############################
        ref_vol_list = []
        from time import sleep
        number_of_ref_class = []
        for igrp in range(len(Tracker["two_way_stable_member"])):
            Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp]
            Tracker["this_data_list_file"] = os.path.join(
                workdir, "stable_class%d.txt" % igrp)
            if myid == main_node:
                write_text_file(Tracker["this_data_list"],
                                Tracker["this_data_list_file"])
            data, old_shifts = get_shrink_data_huang(
                Tracker,
                Tracker["nxinit"],
                Tracker["this_data_list_file"],
                Tracker["constants"]["partstack"],
                myid,
                main_node,
                nproc,
                preshift=True)
            volref = recons3d_4nn_ctf_MPI(myid=myid,
                                          prjlist=data,
                                          symmetry=Tracker["constants"]["sym"],
                                          finfo=None)
            ref_vol_list.append(volref)
            number_of_ref_class.append(len(Tracker["this_data_list"]))
            if myid == main_node:
                log_main.add("group  %d  members %d " %
                             (igrp, len(Tracker["this_data_list"])))
        Tracker["number_of_ref_class"] = number_of_ref_class
        nx_of_image = ref_vol_list[0].get_xsize()
        if Tracker["constants"]["PWadjustment"]:
            Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
        else:
            Tracker["PWadjustment"] = Tracker["constants"][
                "PWadjustment"]  # no PW adjustment
        if myid == main_node:
            for iref in range(len(ref_vol_list)):
                refdata = [None] * 4
                refdata[0] = ref_vol_list[iref]
                refdata[1] = Tracker
                refdata[2] = Tracker["constants"]["myid"]
                refdata[3] = Tracker["constants"]["nproc"]
                volref = user_func(refdata)
                volref.write_image(os.path.join(workdir, "volf_stable.hdf"),
                                   iref)
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        Tracker["this_data_list"] = Tracker["this_accounted_list"]
        outdir = os.path.join(workdir, "Kmref")
        empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(
            ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker)
        Tracker["this_unaccounted_list"] = get_complementary_elements(
            list_to_be_processed, final_list)
        if myid == main_node:
            log_main.add("the number of particles not processed is %d" %
                         len(Tracker["this_unaccounted_list"]))
            write_text_file(Tracker["this_unaccounted_list"],
                            Tracker["this_unaccounted_text"])
        update_full_dict(Tracker["this_unaccounted_list"], Tracker)
        #######################################
        number_of_groups = len(res_groups)
        vol_list = []
        number_of_ref_class = []
        for igrp in range(number_of_groups):
            data, old_shifts = get_shrink_data_huang(
                Tracker,
                Tracker["constants"]["nnxo"],
                os.path.join(outdir, "Class%d.txt" % igrp),
                Tracker["constants"]["partstack"],
                myid,
                main_node,
                nproc,
                preshift=True)
            volref = recons3d_4nn_ctf_MPI(myid=myid,
                                          prjlist=data,
                                          symmetry=Tracker["constants"]["sym"],
                                          finfo=None)
            vol_list.append(volref)

            if (myid == main_node):
                npergroup = len(
                    read_text_file(os.path.join(outdir, "Class%d.txt" % igrp)))
            else:
                npergroup = 0
            npergroup = bcast_number_to_all(npergroup, main_node)
            number_of_ref_class.append(npergroup)

        Tracker["number_of_ref_class"] = number_of_ref_class

        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        nx_of_image = vol_list[0].get_xsize()
        if Tracker["constants"]["PWadjustment"]:
            Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
        else:
            Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]

        if myid == main_node:
            for ivol in range(len(vol_list)):
                refdata = [None] * 4
                refdata[0] = vol_list[ivol]
                refdata[1] = Tracker
                refdata[2] = Tracker["constants"]["myid"]
                refdata[3] = Tracker["constants"]["nproc"]
                volref = user_func(refdata)
                volref.write_image(
                    os.path.join(workdir, "volf_of_Classes.hdf"), ivol)
                log_main.add("number of unaccounted particles  %10d" %
                             len(Tracker["this_unaccounted_list"]))
                log_main.add("number of accounted particles  %10d" %
                             len(Tracker["this_accounted_list"]))

        Tracker["this_data_list"] = Tracker[
            "this_unaccounted_list"]  # reset parameters for the next round calculation
        Tracker["total_stack"] = len(Tracker["this_unaccounted_list"])
        Tracker["this_total_stack"] = Tracker["total_stack"]
        number_of_groups = get_number_of_groups(
            len(Tracker["this_unaccounted_list"]), number_of_images_per_group)
        Tracker["number_of_groups"] = number_of_groups
        while number_of_groups >= 2:
            generation += 1
            partition_dict = {}
            workdir = os.path.join(masterdir, "generation%03d" % generation)
            Tracker["this_dir"] = workdir
            if myid == main_node:
                log_main.add("*********************************************")
                log_main.add("-----    generation             %5d    " %
                             generation)
                log_main.add("number of images per group is set as %10d " %
                             number_of_images_per_group)
                log_main.add("the number of groups is  %10d " %
                             number_of_groups)
                log_main.add(" number of particles for clustering is %10d" %
                             Tracker["total_stack"])
                cmd = "{} {}".format("mkdir", workdir)
                os.system(cmd)
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            create_random_list(Tracker)
            for indep_run in range(Tracker["constants"]["indep_runs"]):
                Tracker["this_particle_list"] = Tracker["this_indep_list"][
                    indep_run]
                ref_vol = recons_mref(Tracker)
                if myid == main_node:
                    log_main.add("independent run  %10d" % indep_run)
                    outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run)
                Tracker["this_data_list"] = Tracker["this_unaccounted_list"]
                #ref_vol=apply_low_pass_filter(ref_vol,Tracker)
                mref_ali3d_EQ_Kmeans(ref_vol, outdir,
                                     Tracker["this_unaccounted_text"], Tracker)
                partition_dict[indep_run] = Tracker["this_partition"]
                Tracker["this_data_list"] = Tracker["this_unaccounted_list"]
                Tracker["total_stack"] = len(Tracker["this_unaccounted_list"])
                Tracker["partition_dict"] = partition_dict
                Tracker["this_total_stack"] = Tracker["total_stack"]
            total_list_of_this_run = Tracker["this_unaccounted_list"]
            ###############################
            do_two_way_comparison(Tracker)
            ###############################
            ref_vol_list = []
            number_of_ref_class = []
            for igrp in range(len(Tracker["two_way_stable_member"])):
                Tracker["this_data_list"] = Tracker["two_way_stable_member"][
                    igrp]
                Tracker["this_data_list_file"] = os.path.join(
                    workdir, "stable_class%d.txt" % igrp)
                if myid == main_node:
                    write_text_file(Tracker["this_data_list"],
                                    Tracker["this_data_list_file"])
                mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
                data, old_shifts = get_shrink_data_huang(
                    Tracker,
                    Tracker["constants"]["nxinit"],
                    Tracker["this_data_list_file"],
                    Tracker["constants"]["partstack"],
                    myid,
                    main_node,
                    nproc,
                    preshift=True)
                volref = recons3d_4nn_ctf_MPI(
                    myid=myid,
                    prjlist=data,
                    symmetry=Tracker["constants"]["sym"],
                    finfo=None)
                #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1)
                if myid == main_node:
                    volref.write_image(os.path.join(workdir, "vol_stable.hdf"),
                                       iref)
                #volref = resample(volref,Tracker["shrinkage"])
                ref_vol_list.append(volref)
                number_of_ref_class.append(len(Tracker["this_data_list"]))
                mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            Tracker["number_of_ref_class"] = number_of_ref_class
            Tracker["this_data_list"] = Tracker["this_accounted_list"]
            outdir = os.path.join(workdir, "Kmref")
            empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(
                ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker)
            # calculate the 3-D structure of original image size for each group
            number_of_groups = len(res_groups)
            Tracker["this_unaccounted_list"] = get_complementary_elements(
                total_list_of_this_run, final_list)
            if myid == main_node:
                log_main.add("the number of particles not processed is %d" %
                             len(Tracker["this_unaccounted_list"]))
                write_text_file(Tracker["this_unaccounted_list"],
                                Tracker["this_unaccounted_text"])
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            update_full_dict(Tracker["this_unaccounted_list"], Tracker)
            vol_list = []
            for igrp in range(number_of_groups):
                data, old_shifts = get_shrink_data_huang(
                    Tracker,
                    Tracker["constants"]["nnxo"],
                    os.path.join(outdir, "Class%d.txt" % igrp),
                    Tracker["constants"]["partstack"],
                    myid,
                    main_node,
                    nproc,
                    preshift=True)
                volref = recons3d_4nn_ctf_MPI(
                    myid=myid,
                    prjlist=data,
                    symmetry=Tracker["constants"]["sym"],
                    finfo=None)
                vol_list.append(volref)

            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            nx_of_image = ref_vol_list[0].get_xsize()
            if Tracker["constants"]["PWadjustment"]:
                Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
            else:
                Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]

            if myid == main_node:
                for ivol in range(len(vol_list)):
                    refdata = [None] * 4
                    refdata[0] = vol_list[ivol]
                    refdata[1] = Tracker
                    refdata[2] = Tracker["constants"]["myid"]
                    refdata[3] = Tracker["constants"]["nproc"]
                    volref = user_func(refdata)
                    volref.write_image(
                        os.path.join(workdir, "volf_of_Classes.hdf"), ivol)
                log_main.add("number of unaccounted particles  %10d" %
                             len(Tracker["this_unaccounted_list"]))
                log_main.add("number of accounted particles  %10d" %
                             len(Tracker["this_accounted_list"]))
            del vol_list
            mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
            number_of_groups = get_number_of_groups(
                len(Tracker["this_unaccounted_list"]),
                number_of_images_per_group)
            Tracker["number_of_groups"] = number_of_groups
            Tracker["this_data_list"] = Tracker["this_unaccounted_list"]
            Tracker["total_stack"] = len(Tracker["this_unaccounted_list"])
        if Tracker["constants"]["unaccounted"]:
            data, old_shifts = get_shrink_data_huang(
                Tracker,
                Tracker["constants"]["nnxo"],
                Tracker["this_unaccounted_text"],
                Tracker["constants"]["partstack"],
                myid,
                main_node,
                nproc,
                preshift=True)
            volref = recons3d_4nn_ctf_MPI(myid=myid,
                                          prjlist=data,
                                          symmetry=Tracker["constants"]["sym"],
                                          finfo=None)
            nx_of_image = volref.get_xsize()
            if Tracker["constants"]["PWadjustment"]:
                Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
            else:
                Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]
            if (myid == main_node):
                refdata = [None] * 4
                refdata[0] = volref
                refdata[1] = Tracker
                refdata[2] = Tracker["constants"]["myid"]
                refdata[3] = Tracker["constants"]["nproc"]
                volref = user_func(refdata)
                #volref    = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1)
                volref.write_image(
                    os.path.join(workdir, "volf_unaccounted.hdf"))
        # Finish program
        if myid == main_node: log_main.add("sxsort3d finishes")
        mpi.mpi_barrier(mpi.MPI_COMM_WORLD)
        return
Example #3
0
def main():
    arglist = []
    for arg in sys.argv:
        arglist.append(arg)
    progname = os.path.basename(arglist[0])
    usage = progname + " stack ref_vol outdir  <maskfile> --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --ynumber=y_numbers  --txs=translational_search_stepx  --delta=angular_step --an=angular_neighborhood --center=1 --maxit=max_iter --CTF --snr=1.0  --ref_a=S --sym=c1 --datasym=symdoc --new"

    parser = OptionParser(usage, version=SPARXVERSION)
    #parser.add_option("--ir",                 type="float", 	     default= -1,                 help="inner radius for rotational correlation > 0 (set to 1) (Angstroms)")
    parser.add_option(
        "--ou",
        type="float",
        default=-1,
        help=
        "outer radius for rotational 2D correlation < int(nx/2)-1 (set to the radius of the particle) (Angstroms)"
    )
    parser.add_option(
        "--rs",
        type="int",
        default=1,
        help="step between rings in rotational correlation >0  (set to 1)")
    parser.add_option(
        "--xr",
        type="string",
        default=" 4  2 1  1   1",
        help=
        "range for translation search in x direction, search is +/-xr (Angstroms) "
    )
    parser.add_option(
        "--txs",
        type="string",
        default="1 1 1 0.5 0.25",
        help=
        "step size of the translation search in x directions, search is -xr, -xr+ts, 0, xr-ts, xr (Angstroms)"
    )
    parser.add_option(
        "--y_restrict",
        type="string",
        default="-1 -1 -1 -1 -1",
        help=
        "range for translational search in y-direction, search is +/-y_restrict in Angstroms. This only applies to local search, i.e., when an is not -1. If y_restrict < 0, then for ihrsrlocalcons (option --localcons local search with consistency), the y search range is set such that it is the same ratio to dp as angular search range is to dphi. For regular ihrsr, y search range is the full range when y_restrict< 0. Default is -1."
    )
    parser.add_option(
        "--ynumber",
        type="string",
        default="4 8 16 32 32",
        help=
        "even number of the translation search in y direction, search is (-dpp/2,-dpp/2+dpp/ny,,..,0,..,dpp/2-dpp/ny dpp/2]"
    )
    parser.add_option("--delta",
                      type="string",
                      default=" 10 6 4  3   2",
                      help="angular step of reference projections")
    parser.add_option(
        "--an",
        type="string",
        default="-1",
        help=
        "angular neighborhood for local searches (default -1, meaning do exhaustive search)"
    )
    parser.add_option(
        "--maxit",
        type="int",
        default=30,
        help=
        "maximum number of iterations performed for each angular step (default 30) "
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="CTF correction")
    parser.add_option("--snr",
                      type="float",
                      default=1.0,
                      help="Signal-to-Noise Ratio of the data (default 1)")
    parser.add_option("--MPI",
                      action="store_true",
                      default=True,
                      help="use MPI version")
    #parser.add_option("--fourvar",           action="store_true",   default=False,               help="compute Fourier variance")
    parser.add_option("--apix",
                      type="float",
                      default=-1.0,
                      help="pixel size in Angstroms")
    parser.add_option("--dp",
                      type="float",
                      default=-1.0,
                      help="delta z - translation in Angstroms")
    parser.add_option("--dphi",
                      type="float",
                      default=-1.0,
                      help="delta phi - rotation in degrees")

    parser.add_option(
        "--ndp",
        type="int",
        default=12,
        help=
        "In symmetrization search, number of delta z steps equals to 2*ndp+1")
    parser.add_option(
        "--ndphi",
        type="int",
        default=12,
        help="In symmetrization search,number of dphi steps equas to 2*ndphi+1"
    )
    parser.add_option("--dp_step",
                      type="float",
                      default=0.1,
                      help="delta z (Angstroms) step  for symmetrization")
    parser.add_option("--dphi_step",
                      type="float",
                      default=0.1,
                      help="dphi step for symmetrization")

    parser.add_option(
        "--psi_max",
        type="float",
        default=10.0,
        help=
        "maximum psi - how far rotation in plane can can deviate from 90 or 270 degrees (default 10)"
    )
    parser.add_option("--rmin",
                      type="float",
                      default=0.0,
                      help="minimal radius for hsearch (Angstroms)")
    parser.add_option("--rmax",
                      type="float",
                      default=80.0,
                      help="maximal radius for hsearch (Angstroms)")
    parser.add_option("--fract",
                      type="float",
                      default=0.7,
                      help="fraction of the volume used for helical search")
    parser.add_option("--sym",
                      type="string",
                      default="c1",
                      help="symmetry of the structure")
    parser.add_option("--function",
                      type="string",
                      default="helical",
                      help="name of the reference preparation function")
    parser.add_option("--datasym",
                      type="string",
                      default="datasym.txt",
                      help="symdoc")
    parser.add_option(
        "--nise",
        type="int",
        default=200,
        help="start symmetrization after nise steps (default 200)")
    parser.add_option("--npad",
                      type="int",
                      default=2,
                      help="padding size for 3D reconstruction, (default 2)")
    parser.add_option("--debug",
                      action="store_true",
                      default=False,
                      help="debug")
    parser.add_option("--new",
                      action="store_true",
                      default=False,
                      help="use rectangular recon and projection version")
    parser.add_option(
        "--initial_theta",
        type="float",
        default=90.0,
        help="intial theta for reference projection (default 90)")
    parser.add_option(
        "--delta_theta",
        type="float",
        default=1.0,
        help="delta theta for reference projection (default 1.0)")
    parser.add_option("--WRAP",
                      type="int",
                      default=1,
                      help="do helical wrapping (default 1, meaning yes)")

    (options, args) = parser.parse_args(arglist[1:])
    if len(args) < 1 or len(args) > 5:
        sxprint("usage: " + usage + "\n")
        sxprint("Please run '" + progname + " -h' for detailed options")
        ERROR(
            "Invalid number of parameters used. please see usage information above."
        )
        return
    else:
        # Convert input arguments in the units/format as expected by ihrsr_MPI in applications.
        if options.apix < 0:
            ERROR("Please enter pixel size")
            return

        rminp = int((float(options.rmin) / options.apix) + 0.5)
        rmaxp = int((float(options.rmax) / options.apix) + 0.5)

        from sp_utilities import get_input_from_string, get_im

        xr = get_input_from_string(options.xr)
        txs = get_input_from_string(options.txs)
        y_restrict = get_input_from_string(options.y_restrict)

        irp = 1
        if options.ou < 0: oup = -1
        else: oup = int((options.ou / options.apix) + 0.5)
        xrp = ''
        txsp = ''
        y_restrict2 = ''

        for i in range(len(xr)):
            xrp += " " + str(float(xr[i]) / options.apix)
        for i in range(len(txs)):
            txsp += " " + str(float(txs[i]) / options.apix)
        # now y_restrict has the same format as x search range .... has to change ihrsr accordingly
        for i in range(len(y_restrict)):
            y_restrict2 += " " + str(float(y_restrict[i]) / options.apix)

        if sp_global_def.CACHE_DISABLE:
            from sp_utilities import disable_bdb_cache
            disable_bdb_cache()

        from sp_applications import ihrsr
        sp_global_def.BATCH = True
        if len(args) < 4: mask = None
        else: mask = args[3]
        ihrsr(args[0], args[1], args[2], mask, irp, oup, options.rs, xrp,
              options.ynumber, txsp, options.delta, options.initial_theta,
              options.delta_theta, options.an, options.maxit, options.CTF,
              options.snr, options.dp, options.ndp, options.dp_step,
              options.dphi, options.ndphi, options.dphi_step, options.psi_max,
              rminp, rmaxp, options.fract, options.nise, options.npad,
              options.sym, options.function, options.datasym, options.apix,
              options.debug, options.MPI, options.WRAP, y_restrict2)
        sp_global_def.BATCH = False
Example #4
0
def main():
    from sp_utilities import get_input_from_string
    progname = os.path.basename(sys.argv[0])
    usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables"
    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option("--radius",
                      type="int",
                      default=-1,
                      help=" particle radius for alignment")
    parser.add_option(
        "--xr",
        type="string",
        default="2 1",
        help=
        "range for translation search in x direction, search is +/xr (default 2,1)"
    )
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help=
        "range for translation search in y direction, search is +/yr (default = same as xr)"
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1 0.5",
        help=
        "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)"
    )
    parser.add_option("--thld_err",
                      type="float",
                      default=0.7,
                      help="threshld of pixel error (default = 0.75)")
    parser.add_option(
        "--num_ali",
        type="int",
        default=5,
        help="number of alignments performed for stability (default = 5)")
    parser.add_option("--maxit",
                      type="int",
                      default=30,
                      help="number of iterations for each xr (default = 30)")
    parser.add_option(
        "--fl",
        type="float",
        default=0.45,
        help=
        "cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)"
    )
    parser.add_option(
        "--aa",
        type="float",
        default=0.2,
        help=
        "fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)"
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="Use CTF correction during the alignment ")
    parser.add_option("--verbose",
                      action="store_true",
                      default=False,
                      help="print individual pixel error (default = False)")
    parser.add_option(
        "--stables",
        action="store_true",
        default=False,
        help="output the stable particles number in file (default = False)")
    parser.add_option(
        "--method",
        type="string",
        default=" ",
        help="SHC (standard method is default when flag is ommitted)")

    (options, args) = parser.parse_args()

    if len(args) != 1 and len(args) != 2:
        sxprint("Usage: " + usage)
        sxprint("Please run \'" + progname + " -h\' for detailed options")
        ERROR(
            "Invalid number of parameters used. Please see usage information above."
        )
        return
    else:
        if sp_global_def.CACHE_DISABLE:
            from sp_utilities import disable_bdb_cache
            disable_bdb_cache()

        from sp_applications import within_group_refinement, ali2d_ras
        from sp_pixel_error import multi_align_stability
        from sp_utilities import write_text_file, write_text_row

        sp_global_def.BATCH = True

        xrng = get_input_from_string(options.xr)

        if options.yr == "-1":
            yrng = xrng
        else:
            yrng = get_input_from_string(options.yr)

        step = get_input_from_string(options.ts)

        class_data = EMData.read_images(args[0])

        nx = class_data[0].get_xsize()
        ou = options.radius
        num_ali = options.num_ali
        if ou == -1: ou = nx / 2 - 2
        from sp_utilities import model_circle, get_params2D, set_params2D
        mask = model_circle(ou, nx, nx)

        if options.CTF:
            from sp_filter import filt_ctf
            for im in range(len(class_data)):
                #  Flip phases
                class_data[im] = filt_ctf(class_data[im],
                                          class_data[im].get_attr("ctf"),
                                          binary=1)
        for im in class_data:
            im.set_attr("previousmax", -1.0e10)
            try:
                t = im.get_attr(
                    "xform.align2d")  # if they are there, no need to set them!
            except:
                try:
                    t = im.get_attr("xform.projection")
                    d = t.get_params("spider")
                    set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
                except:
                    set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
        all_ali_params = []

        for ii in range(num_ali):
            ali_params = []
            if options.verbose:
                ALPHA = []
                SX = []
                SY = []
                MIRROR = []
            if (xrng[0] == 0.0 and yrng[0] == 0.0):
                avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \
                  maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa)
            else:
                avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \
                  maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method)
                from sp_utilities import info
                #print "  avet  ",info(avet)
            for im in class_data:
                alpha, sx, sy, mirror, scale = get_params2D(im)
                ali_params.extend([alpha, sx, sy, mirror])
                if options.verbose:
                    ALPHA.append(alpha)
                    SX.append(sx)
                    SY.append(sy)
                    MIRROR.append(mirror)
            all_ali_params.append(ali_params)
            if options.verbose:
                write_text_file([ALPHA, SX, SY, MIRROR],
                                "ali_params_run_%d" % ii)
        """
		avet = class_data[0]
		from sp_utilities import read_text_file
		all_ali_params = []
		for ii in xrange(5):
			temp = read_text_file( "ali_params_run_%d"%ii,-1)
			uuu = []
			for k in xrange(len(temp[0])):
				uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]])
			all_ali_params.append(uuu)


		"""

        stable_set, mir_stab_rate, pix_err = multi_align_stability(
            all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose,
            2 * ou + 1)
        sxprint("%4s %20s %20s %20s %30s %6.2f" %
                ("", "Size of set", "Size of stable set", "Mirror stab rate",
                 "Pixel error prior to pruning the set above threshold of",
                 options.thld_err))
        sxprint("Average stat: %10d %20d %20.2f   %15.2f" %
                (len(class_data), len(stable_set), mir_stab_rate, pix_err))
        if (len(stable_set) > 0):
            if options.stables:
                stab_mem = [[0, 0.0, 0] for j in range(len(stable_set))]
                for j in range(len(stable_set)):
                    stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j]
                write_text_row(stab_mem, "stable_particles.txt")

            stable_set_id = []
            particle_pixerr = []
            for s in stable_set:
                stable_set_id.append(s[1])
                particle_pixerr.append(s[0])
            from sp_fundamentals import rot_shift2D
            avet.to_zero()
            l = -1
            sxprint("average parameters:  angle, x-shift, y-shift, mirror")
            for j in stable_set_id:
                l += 1
                sxprint(" %4d  %4d  %12.2f %12.2f %12.2f        %1d" %
                        (l, j, stable_set[l][2][0], stable_set[l][2][1],
                         stable_set[l][2][2], int(stable_set[l][2][3])))
                avet += rot_shift2D(class_data[j], stable_set[l][2][0],
                                    stable_set[l][2][1], stable_set[l][2][2],
                                    stable_set[l][2][3])
            avet /= (l + 1)
            avet.set_attr('members', stable_set_id)
            avet.set_attr('pix_err', pix_err)
            avet.set_attr('pixerr', particle_pixerr)
            avet.write_image(args[1])

        sp_global_def.BATCH = False