def test_components(self):
        g = DirectedGraph(3)
        g.connect(2, 1)
        g.connect(1, 3)
        g.connect(3, 1)

        comps = g.components()

        assert comps[1] == comps[3]
        assert comps[2] != comps[1]
        assert comps[2] != comps[3]
    def test_component_list(self):
        g = DirectedGraph(3)
        g.connect(2, 1)
        g.connect(1, 3)
        g.connect(3, 1)

        comps = g.component_list()

        assert [1, 3] in comps.values()
        assert [2] in comps.values()
        assert [2, 1] not in comps.values()
    def test_connect(self):
        g = DirectedGraph(8)
        n1 = 1
        n2 = 2

        g.connect(n1, n2)
        assert g.is_connected(n1, n2)
        assert not g.is_connected(n2, n1)

        g.disconnect(n1, n2)
        assert not g.is_connected(n1, n2)

        g.connect(n1, n2)
        g.connect(n2, n1)
        assert g.is_connected(n1, n2)
        assert g.is_connected(n2, n1)
    def test_is_connected_graph(self):
        g = DirectedGraph(3)
        g.connect(1, 2)
        g.connect(1, 3)
        g.connect(2, 3)
        assert not g.is_connected_graph()

        g.connect(3, 1)
        assert g.is_connected_graph()
    def get_random_flow_network(N: int) -> DirectedGraph:
        """
        Losowa sieć przepływu
        N - liczba warstw sieci
        źródło - Node #1
        ujście - Node #len(graph)
        """
        assert N >= 2

        print(f"liczba warstw: {N}")

        # krok 1: tworzenie warstw
        node_count_in_layer = [1] + [random.randint(2, N) for _ in range(N)] + [1]

        node_layer = [None]
        layer_nodes = []

        total = 1
        for i, count in enumerate(node_count_in_layer):
            node_layer.extend([i] * count)
            layer_nodes.append(list(range(total, total + count)))
            total += count

        print(f"liczba wierzchołków w warstwie: {node_count_in_layer}")
        print(f"wierzchołki w warstwie: {layer_nodes}")

        # krok 2: losowanie krawędzi między warstwami
        g = DirectedGraph(size=sum(node_count_in_layer))

        for i in range(1, N + 1):
            for node in layer_nodes[i]:
                # losowa krawędź wchodząca
                g.connect(random.choice(layer_nodes[i - 1]), node)
                # losowa krawędź wychodząca
                g.connect(node, random.choice(layer_nodes[i + 1]))

        # krok 3: odajemy 2N losowych łuków

        edges_added = 0
        while edges_added < 2 * N:
            # brak krawędzi wychodzącej z ujścia
            n1 = random.randint(1, len(g) - 1)
            # brak krawędzi wchodzącej do źródła
            n2 = random.randint(2, len(g))
            if n1 == n2 or g.is_connected(n1, n2) or g.is_connected(n2, n1):
                continue
            g.connect(n1, n2)
            edges_added += 1
        # krok 4: przypisanie każdej krawędzi losowej przepustowości
        g.assign_random_weights()

        return g
Example #6
0
def get_example():
    exg = DirectedGraph(11)

    s = 1
    a = 2
    b = 3
    c = 4
    d = 5
    e = 6
    f = 7
    g = 8
    h = 9
    i = 10
    t = 11

    exg.connect(s, a, 10)
    exg.connect(s, b, 3)
    exg.connect(s, c, 6)

    exg.connect(a, b, 8)
    exg.connect(a, d, 8)
    exg.connect(a, e, 6)

    exg.connect(b, e, 2)
    exg.connect(b, f, 10)

    exg.connect(c, d, 9)
    exg.connect(c, f, 1)

    exg.connect(d, h, 5)

    exg.connect(e, d, 1)
    exg.connect(e, i, 7)

    exg.connect(f, g, 9)

    exg.connect(g, t, 7)

    exg.connect(h, t, 5)

    exg.connect(i, t, 7)

    return exg