Example #1
0
 def _build_network(self, orig_width, hidden_with):
     with Model.define_operators({">>": chain}):
         # very simple encoder-decoder model
         self.encoder = Affine(hidden_with, orig_width)
         self.model = self.encoder >> zero_init(
             Affine(orig_width, hidden_with, drop_factor=0.0))
     self.sgd = create_default_optimizer(self.model.ops)
Example #2
0
def pretrain(
    texts_loc,
    vectors_model,
    output_dir,
    width=128,
    depth=4,
    embed_rows=1000,
    dropout=0.2,
    nr_iter=10,
    seed=0,
):
    """
    Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
    using an approximate language-modelling objective. Specifically, we load
    pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict
    vectors which match the pre-trained ones. The weights are saved to a directory
    after each epoch. You can then pass a path to one of these pre-trained weights
    files to the 'spacy train' command.

    This technique may be especially helpful if you have little labelled data.
    However, it's still quite experimental, so your mileage may vary.

    To load the weights back in during 'spacy train', you need to ensure
    all settings are the same between pretraining and training. The API and
    errors around this need some improvement.
    """
    config = dict(locals())
    output_dir = ensure_path(output_dir)
    random.seed(seed)
    numpy.random.seed(seed)
    if not output_dir.exists():
        output_dir.mkdir()
    with (output_dir / "config.json").open("w") as file_:
        file_.write(json.dumps(config))
    has_gpu = prefer_gpu()
    nlp = spacy.load(vectors_model)
    tok2vec = Tok2Vec_LSTM(width, embed_rows, depth, dropout)
    print(dir(tok2vec))
    model = create_pretraining_model(nlp, tok2vec)
    optimizer = create_default_optimizer(model.ops)
    tracker = ProgressTracker()
    print("Epoch", "#Words", "Loss", "L/W", "w/s")
    texts = stream_texts() if texts_loc == "-" else load_texts(texts_loc)
    for epoch in range(nr_iter):
        for batch in minibatch(texts, size=256):
            docs = make_docs(nlp, batch, heads=False)
            loss = make_update(model, docs, optimizer, drop=dropout)
            progress = tracker.update(epoch, loss, docs)
            if progress:
                print(*progress)
                if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 6:
                    break
        with (output_dir / ("model%d.bin" % epoch)).open("wb") as file_:
            # This is annoying -- work around how Parser expects this
            file_.write(chain(tok2vec, layerize(noop())).to_bytes())
        with (output_dir / "log.jsonl").open("a") as file_:
            file_.write(
                json.dumps(
                    {"nr_word": tracker.nr_word, "loss": tracker.loss, "epoch": epoch}
                )
            )
        if texts_loc != "-":
            texts = load_texts(texts_loc)
def main(
    model="./zh_vectors_web_ud_lg/model-final",
    new_model_name="zh_vectors_web_ud_clue_lg",
    output_dir="./zh_vectors_web_ud_clue_lg",
    train_path="./clue_spacy_train.jsonl",
    dev_path="./clue_spacy_dev.jsonl",
    meta_path="./meta.json",
    use_gpu=0,
    n_iter=50
):
    import tqdm
    """Set up the pipeline and entity recognizer, and train the new entity."""
    random.seed(0)
    if model is not None:
        nlp = spacy.load(model)  # load existing spaCy model
        print("Loaded model '%s'" % model)

    # Add entity recognizer to model if it's not in the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    if "ner" not in nlp.pipe_names:
        ner = nlp.create_pipe("ner")
        nlp.add_pipe(ner)
    # otherwise, get it, so we can add labels to it
    else:
        ner = nlp.get_pipe("ner")

    for label in LABEL:
        if label not in ner.labels:
            ner.add_label(label)  # add new entity label to entity recognizer

    train_path = ensure_path(train_path)
    dev_path = ensure_path(dev_path)

    if not train_path or not train_path.exists():
        msg.fail("Training data not found", train_path, exits=1)
    if not dev_path or not dev_path.exists():
        msg.fail("Development data not found", dev_path, exits=1)

    if output_dir.exists() and [p for p in output_dir.iterdir() if p.is_dir()]:
        msg.warn(
            "Output directory is not empty",
            "This can lead to unintended side effects when saving the model. "
            "Please use an empty directory or a different path instead. If "
            "the specified output path doesn't exist, the directory will be "
            "created for you.",
        )
    if not output_dir.exists():
        output_dir.mkdir()

    meta = srsly.read_json(meta_path) if meta_path else {}

    # Prepare training corpus
    msg.text("Counting training words (limit={})".format(0))
    corpus = GoldCorpus(train_path, dev_path, limit=0)
    n_train_words = corpus.count_train()
    
    if model is None:   
        optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
    else:
        optimizer = create_default_optimizer(Model.ops)
        # Todo: gpu train?

    dropout_rates = decaying( 0.2, 0.2, 0.0)
    
    batch_sizes = compounding( 100.0, 1000.0 , 1.001)

    # get names of other pipes to disable them during training
    pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"]
    other_pipes = [
        pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]


    # UnboundLocalError: local variable 'has_beam_widths' referenced before assignment
    # fmt: off
    eval_beam_widths=""
    if not eval_beam_widths:
        eval_beam_widths = [1]
    else:
        eval_beam_widths = [int(bw) for bw in eval_beam_widths.split(",")]
        if 1 not in eval_beam_widths:
            eval_beam_widths.append(1)
        eval_beam_widths.sort()
    has_beam_widths = eval_beam_widths != [1]
    row_head, output_stats = _configure_training_output(["ner"], use_gpu, has_beam_widths)
    row_widths = [len(w) for w in row_head]
    row_settings = {"widths": row_widths, "aligns": tuple(["r" for i in row_head]), "spacing": 2}
    # fmt: on
    print("")
    msg.row(row_head, **row_settings)
    msg.row(["-" * width for width in row_settings["widths"]], **row_settings)
    try:
        noise_level = 0.0
        orth_variant_level = 0.0
        gold_preproc = False
        verbose = False

        best_score = 0.0
        with nlp.disable_pipes(*other_pipes):  # only train NER
            for itn in range(n_iter):
                train_docs = corpus.train_docs(
                    nlp,
                    noise_level=noise_level,
                    orth_variant_level=orth_variant_level,
                    gold_preproc=gold_preproc,
                    max_length=0,
                    ignore_misaligned=True,
                )
                words_seen = 0
                with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
                    losses = {}
                    for batch in minibatch_by_words(train_docs, size=batch_sizes):
                        if not batch:
                            continue
                        docs, golds = zip(*batch)
                        nlp.update(
                            docs,
                            golds,
                            sgd=optimizer,
                            drop=next(dropout_rates),
                            losses=losses,
                        )
                        if not int(os.environ.get("LOG_FRIENDLY", 0)):
                            pbar.update(sum(len(doc) for doc in docs))
                        words_seen += sum(len(doc) for doc in docs)
                with nlp.use_params(optimizer.averages):
                    set_env_log(False)
                    epoch_model_path = output_dir / ("model%d" % itn)
                    nlp.to_disk(epoch_model_path)
                    nlp_loaded = load_model_from_path(epoch_model_path)
                    for beam_width in eval_beam_widths:
                        for name, component in nlp_loaded.pipeline:
                            if hasattr(component, "cfg"):
                                component.cfg["beam_width"] = beam_width
                        dev_docs = list(
                            corpus.dev_docs(
                                nlp_loaded,
                                gold_preproc=gold_preproc,
                                ignore_misaligned=True,
                            )
                        )
                        nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
                        start_time = timer()
                        scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose)
                        end_time = timer()
                        if use_gpu < 0:
                            gpu_wps = None
                            cpu_wps = nwords / (end_time - start_time)
                        else:
                            gpu_wps = nwords / (end_time - start_time)
                            with Model.use_device("cpu"):
                                nlp_loaded = load_model_from_path(epoch_model_path)
                                for name, component in nlp_loaded.pipeline:
                                    if hasattr(component, "cfg"):
                                        component.cfg["beam_width"] = beam_width
                                dev_docs = list(
                                    corpus.dev_docs(
                                        nlp_loaded,
                                        gold_preproc=gold_preproc,
                                        ignore_misaligned=True,
                                    )
                                )
                                start_time = timer()
                                scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose)
                                end_time = timer()
                                cpu_wps = nwords / (end_time - start_time)
                        acc_loc = output_dir / ("model%d" % itn) / "accuracy.json"
                        srsly.write_json(acc_loc, scorer.scores)

                        # Update model meta.json
                        meta["lang"] = nlp.lang
                        meta["pipeline"] = nlp.pipe_names
                        meta["spacy_version"] = ">=%s" % spacy.__version__
                        if beam_width == 1:
                            meta["speed"] = {
                                "nwords": nwords,
                                "cpu": cpu_wps,
                                "gpu": gpu_wps,
                            }
                            meta["accuracy"] = scorer.scores
                        else:
                            meta.setdefault("beam_accuracy", {})
                            meta.setdefault("beam_speed", {})
                            meta["beam_accuracy"][beam_width] = scorer.scores
                            meta["beam_speed"][beam_width] = {
                                "nwords": nwords,
                                "cpu": cpu_wps,
                                "gpu": gpu_wps,
                            }
                        meta["vectors"] = {
                            "width": nlp.vocab.vectors_length,
                            "vectors": len(nlp.vocab.vectors),
                            "keys": nlp.vocab.vectors.n_keys,
                            "name": nlp.vocab.vectors.name,
                        }
                        meta.setdefault("name", "model%d" % itn)
                        meta.setdefault("version", "0.0.1")
                        meta["labels"] = nlp.meta["labels"]
                        meta_loc = output_dir / ("model%d" % itn) / "meta.json"
                        srsly.write_json(meta_loc, meta)
                        set_env_log(verbose)

                        progress = _get_progress(
                            itn,
                            losses,
                            scorer.scores,
                            output_stats,
                            beam_width=beam_width if has_beam_widths else None,
                            cpu_wps=cpu_wps,
                            gpu_wps=gpu_wps,
                        )

                        msg.row(progress, **row_settings)

    finally:
        with nlp.use_params(optimizer.averages):
            final_model_path = output_dir / "model-final"
            nlp.to_disk(final_model_path)
        msg.good("Saved model to output directory", final_model_path)
        meta["pipeline"] = nlp.pipe_names
        meta["labels"] = nlp.meta["labels"]
        meta["factories"] = nlp.meta["factories"]
        with msg.loading("Creating best model..."):
            best_model_path = _collate_best_model(meta, output_dir, nlp.pipe_names)
        msg.good("Created best model", best_model_path)
Example #4
0
def custom_train(
    lang,
    output_path,
    train_path,
    dev_path,
    raw_text=None,
    base_model=None,
    pipeline="tagger,parser,ner",
    vectors=None,
    n_iter=30,
    n_early_stopping=None,
    n_examples=0,
    use_gpu=-1,
    version="0.0.0",
    meta_path=None,
    init_tok2vec=None,
    parser_multitasks="",
    entity_multitasks="",
    noise_level=0.0,
    orth_variant_level=0.0,
    eval_beam_widths="",
    gold_preproc=False,
    learn_tokens=False,
    textcat_multilabel=False,
    textcat_arch="bow",
    textcat_positive_label=None,
    verbose=False,
    debug=False,
):
    """
    Train or update a spaCy model. Requires data to be formatted in spaCy's
    JSON format. To convert data from other formats, use the `spacy convert`
    command.
    """

    # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
    import tqdm

    msg = Printer()
    util.fix_random_seed()
    util.set_env_log(verbose)

    # Make sure all files and paths exists if they are needed
    train_path = util.ensure_path(train_path)
    dev_path = util.ensure_path(dev_path)
    meta_path = util.ensure_path(meta_path)
    output_path = util.ensure_path(output_path)
    if raw_text is not None:
        raw_text = list(srsly.read_jsonl(raw_text))
    if not train_path or not train_path.exists():
        msg.fail("Training data not found", train_path, exits=1)
    if not dev_path or not dev_path.exists():
        msg.fail("Development data not found", dev_path, exits=1)
    if meta_path is not None and not meta_path.exists():
        msg.fail("Can't find model meta.json", meta_path, exits=1)
    meta = srsly.read_json(meta_path) if meta_path else {}
    if output_path.exists() and [
            p for p in output_path.iterdir() if p.is_dir()
    ]:
        msg.warn(
            "Output directory is not empty",
            "This can lead to unintended side effects when saving the model. "
            "Please use an empty directory or a different path instead. If "
            "the specified output path doesn't exist, the directory will be "
            "created for you.",
        )
    if not output_path.exists():
        output_path.mkdir()

    # Take dropout and batch size as generators of values -- dropout
    # starts high and decays sharply, to force the optimizer to explore.
    # Batch size starts at 1 and grows, so that we make updates quickly
    # at the beginning of training.
    dropout_rates = util.decaying(
        util.env_opt("dropout_from", 0.2),
        util.env_opt("dropout_to", 0.2),
        util.env_opt("dropout_decay", 0.0),
    )
    batch_sizes = util.compounding(
        util.env_opt("batch_from", 100.0),
        util.env_opt("batch_to", 1000.0),
        util.env_opt("batch_compound", 1.001),
    )

    if not eval_beam_widths:
        eval_beam_widths = [1]
    else:
        eval_beam_widths = [int(bw) for bw in eval_beam_widths.split(",")]
        if 1 not in eval_beam_widths:
            eval_beam_widths.append(1)
        eval_beam_widths.sort()
    has_beam_widths = eval_beam_widths != [1]

    # Set up the base model and pipeline. If a base model is specified, load
    # the model and make sure the pipeline matches the pipeline setting. If
    # training starts from a blank model, intitalize the language class.
    pipeline = [p.strip() for p in pipeline.split(",")]
    msg.text("Training pipeline: {}".format(pipeline))
    if base_model:
        msg.text("Starting with base model '{}'".format(base_model))
        nlp = util.load_model(base_model)
        if nlp.lang != lang:
            msg.fail(
                "Model language ('{}') doesn't match language specified as "
                "`lang` argument ('{}') ".format(nlp.lang, lang),
                exits=1,
            )
        nlp.disable_pipes([p for p in nlp.pipe_names if p not in pipeline])
        for pipe in pipeline:
            if pipe not in nlp.pipe_names:
                if pipe == "parser":
                    pipe_cfg = {"learn_tokens": learn_tokens}
                elif pipe == "textcat":
                    pipe_cfg = {
                        "exclusive_classes": not textcat_multilabel,
                        "architecture": textcat_arch,
                        "positive_label": textcat_positive_label,
                    }
                else:
                    pipe_cfg = {}
                nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg))
            else:
                if pipe == "textcat":
                    textcat_cfg = nlp.get_pipe("textcat").cfg
                    base_cfg = {
                        "exclusive_classes": textcat_cfg["exclusive_classes"],
                        "architecture": textcat_cfg["architecture"],
                        "positive_label": textcat_cfg["positive_label"],
                    }
                    pipe_cfg = {
                        "exclusive_classes": not textcat_multilabel,
                        "architecture": textcat_arch,
                        "positive_label": textcat_positive_label,
                    }
                    if base_cfg != pipe_cfg:
                        msg.fail(
                            "The base textcat model configuration does"
                            "not match the provided training options. "
                            "Existing cfg: {}, provided cfg: {}".format(
                                base_cfg, pipe_cfg),
                            exits=1,
                        )
    else:
        msg.text("Starting with blank model '{}'".format(lang))
        lang_cls = util.get_lang_class(lang)
        ### Here are our modifications:
        lang_cls.Defaults.tag_map = custom_tag_map
        nlp = lang_cls()
        assert nlp.vocab.morphology.n_tags == 36
        ###
        for pipe in pipeline:
            if pipe == "parser":
                pipe_cfg = {"learn_tokens": learn_tokens}
            elif pipe == "textcat":
                pipe_cfg = {
                    "exclusive_classes": not textcat_multilabel,
                    "architecture": textcat_arch,
                    "positive_label": textcat_positive_label,
                }
            else:
                pipe_cfg = {}
            nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg))

    if vectors:
        msg.text("Loading vector from model '{}'".format(vectors))
        _load_vectors(nlp, vectors)

    # Multitask objectives
    multitask_options = [("parser", parser_multitasks),
                         ("ner", entity_multitasks)]
    for pipe_name, multitasks in multitask_options:
        if multitasks:
            if pipe_name not in pipeline:
                msg.fail("Can't use multitask objective without '{}' in the "
                         "pipeline".format(pipe_name))
            pipe = nlp.get_pipe(pipe_name)
            for objective in multitasks.split(","):
                pipe.add_multitask_objective(objective)

    # Prepare training corpus
    msg.text("Counting training words (limit={})".format(n_examples))
    corpus = GoldCorpus(train_path, dev_path, limit=n_examples)
    n_train_words = corpus.count_train()

    if base_model:
        # Start with an existing model, use default optimizer
        optimizer = create_default_optimizer(Model.ops)
    else:
        # Start with a blank model, call begin_training
        optimizer = nlp.begin_training(lambda: corpus.train_tuples,
                                       device=use_gpu)

    nlp._optimizer = None

    # Load in pretrained weights
    if init_tok2vec is not None:
        components = _load_pretrained_tok2vec(nlp, init_tok2vec)
        msg.text("Loaded pretrained tok2vec for: {}".format(components))

    # Verify textcat config
    if "textcat" in pipeline:
        textcat_labels = nlp.get_pipe("textcat").cfg["labels"]
        if textcat_positive_label and textcat_positive_label not in textcat_labels:
            msg.fail(
                "The textcat_positive_label (tpl) '{}' does not match any "
                "label in the training data.".format(textcat_positive_label),
                exits=1,
            )
        if textcat_positive_label and len(textcat_labels) != 2:
            msg.fail(
                "A textcat_positive_label (tpl) '{}' was provided for training "
                "data that does not appear to be a binary classification "
                "problem with two labels.".format(textcat_positive_label),
                exits=1,
            )
        train_docs = corpus.train_docs(
            nlp,
            noise_level=noise_level,
            gold_preproc=gold_preproc,
            max_length=0,
            ignore_misaligned=True,
        )
        train_labels = set()
        if textcat_multilabel:
            multilabel_found = False
            for text, gold in train_docs:
                train_labels.update(gold.cats.keys())
                if list(gold.cats.values()).count(1.0) != 1:
                    multilabel_found = True
            if not multilabel_found and not base_model:
                msg.warn("The textcat training instances look like they have "
                         "mutually-exclusive classes. Remove the flag "
                         "'--textcat-multilabel' to train a classifier with "
                         "mutually-exclusive classes.")
        if not textcat_multilabel:
            for text, gold in train_docs:
                train_labels.update(gold.cats.keys())
                if list(gold.cats.values()).count(1.0) != 1 and not base_model:
                    msg.warn(
                        "Some textcat training instances do not have exactly "
                        "one positive label. Modifying training options to "
                        "include the flag '--textcat-multilabel' for classes "
                        "that are not mutually exclusive.")
                    nlp.get_pipe("textcat").cfg["exclusive_classes"] = False
                    textcat_multilabel = True
                    break
        if base_model and set(textcat_labels) != train_labels:
            msg.fail(
                "Cannot extend textcat model using data with different "
                "labels. Base model labels: {}, training data labels: "
                "{}.".format(textcat_labels, list(train_labels)),
                exits=1,
            )
        if textcat_multilabel:
            msg.text(
                "Textcat evaluation score: ROC AUC score macro-averaged across "
                "the labels '{}'".format(", ".join(textcat_labels)))
        elif textcat_positive_label and len(textcat_labels) == 2:
            msg.text("Textcat evaluation score: F1-score for the "
                     "label '{}'".format(textcat_positive_label))
        elif len(textcat_labels) > 1:
            if len(textcat_labels) == 2:
                msg.warn(
                    "If the textcat component is a binary classifier with "
                    "exclusive classes, provide '--textcat_positive_label' for "
                    "an evaluation on the positive class.")
            msg.text(
                "Textcat evaluation score: F1-score macro-averaged across "
                "the labels '{}'".format(", ".join(textcat_labels)))
        else:
            msg.fail(
                "Unsupported textcat configuration. Use `spacy debug-data` "
                "for more information.")

    # fmt: off
    row_head, output_stats = _configure_training_output(
        pipeline, use_gpu, has_beam_widths)
    row_widths = [len(w) for w in row_head]
    row_settings = {
        "widths": row_widths,
        "aligns": tuple(["r" for i in row_head]),
        "spacing": 2
    }
    # fmt: on
    print("")
    msg.row(row_head, **row_settings)
    msg.row(["-" * width for width in row_settings["widths"]], **row_settings)
    try:
        iter_since_best = 0
        best_score = 0.0
        for i in range(n_iter):
            train_docs = corpus.train_docs(
                nlp,
                noise_level=noise_level,
                orth_variant_level=orth_variant_level,
                gold_preproc=gold_preproc,
                max_length=0,
                ignore_misaligned=True,
            )
            if raw_text:
                random.shuffle(raw_text)
                raw_batches = util.minibatch(
                    (nlp.make_doc(rt["text"]) for rt in raw_text), size=8)
            words_seen = 0
            with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
                losses = {}
                for batch in util.minibatch_by_words(train_docs,
                                                     size=batch_sizes):
                    if not batch:
                        continue
                    docs, golds = zip(*batch)
                    nlp.update(
                        docs,
                        golds,
                        sgd=optimizer,
                        drop=next(dropout_rates),
                        losses=losses,
                    )
                    if raw_text:
                        # If raw text is available, perform 'rehearsal' updates,
                        # which use unlabelled data to reduce overfitting.
                        raw_batch = list(next(raw_batches))
                        nlp.rehearse(raw_batch, sgd=optimizer, losses=losses)
                    if not int(os.environ.get("LOG_FRIENDLY", 0)):
                        pbar.update(sum(len(doc) for doc in docs))
                    words_seen += sum(len(doc) for doc in docs)
            with nlp.use_params(optimizer.averages):
                util.set_env_log(False)
                epoch_model_path = output_path / ("model%d" % i)
                nlp.to_disk(epoch_model_path)
                nlp_loaded = util.load_model_from_path(epoch_model_path)
                for beam_width in eval_beam_widths:
                    for name, component in nlp_loaded.pipeline:
                        if hasattr(component, "cfg"):
                            component.cfg["beam_width"] = beam_width
                    dev_docs = list(
                        corpus.dev_docs(
                            nlp_loaded,
                            gold_preproc=gold_preproc,
                            ignore_misaligned=True,
                        ))
                    nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
                    start_time = timer()
                    scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose)
                    end_time = timer()
                    if use_gpu < 0:
                        gpu_wps = None
                        cpu_wps = nwords / (end_time - start_time)
                    else:
                        gpu_wps = nwords / (end_time - start_time)
                        with Model.use_device("cpu"):
                            nlp_loaded = util.load_model_from_path(
                                epoch_model_path)
                            for name, component in nlp_loaded.pipeline:
                                if hasattr(component, "cfg"):
                                    component.cfg["beam_width"] = beam_width
                            dev_docs = list(
                                corpus.dev_docs(
                                    nlp_loaded,
                                    gold_preproc=gold_preproc,
                                    ignore_misaligned=True,
                                ))
                            start_time = timer()
                            scorer = nlp_loaded.evaluate(dev_docs,
                                                         verbose=verbose)
                            end_time = timer()
                            cpu_wps = nwords / (end_time - start_time)
                    acc_loc = output_path / ("model%d" % i) / "accuracy.json"
                    srsly.write_json(acc_loc, scorer.scores)

                    # Update model meta.json
                    meta["lang"] = nlp.lang
                    meta["pipeline"] = nlp.pipe_names
                    meta["spacy_version"] = ">=%s" % about.__version__
                    if beam_width == 1:
                        meta["speed"] = {
                            "nwords": nwords,
                            "cpu": cpu_wps,
                            "gpu": gpu_wps,
                        }
                        meta["accuracy"] = scorer.scores
                    else:
                        meta.setdefault("beam_accuracy", {})
                        meta.setdefault("beam_speed", {})
                        meta["beam_accuracy"][beam_width] = scorer.scores
                        meta["beam_speed"][beam_width] = {
                            "nwords": nwords,
                            "cpu": cpu_wps,
                            "gpu": gpu_wps,
                        }
                    meta["vectors"] = {
                        "width": nlp.vocab.vectors_length,
                        "vectors": len(nlp.vocab.vectors),
                        "keys": nlp.vocab.vectors.n_keys,
                        "name": nlp.vocab.vectors.name,
                    }
                    meta.setdefault("name", "model%d" % i)
                    meta.setdefault("version", version)
                    meta["labels"] = nlp.meta["labels"]
                    meta_loc = output_path / ("model%d" % i) / "meta.json"
                    srsly.write_json(meta_loc, meta)
                    util.set_env_log(verbose)

                    progress = _get_progress(
                        i,
                        losses,
                        scorer.scores,
                        output_stats,
                        beam_width=beam_width if has_beam_widths else None,
                        cpu_wps=cpu_wps,
                        gpu_wps=gpu_wps,
                    )
                    if i == 0 and "textcat" in pipeline:
                        textcats_per_cat = scorer.scores.get(
                            "textcats_per_cat", {})
                        for cat, cat_score in textcats_per_cat.items():
                            if cat_score.get("roc_auc_score", 0) < 0:
                                msg.warn(
                                    "Textcat ROC AUC score is undefined due to "
                                    "only one value in label '{}'.".format(
                                        cat))
                    msg.row(progress, **row_settings)
                # Early stopping
                if n_early_stopping is not None:
                    current_score = _score_for_model(meta)
                    if current_score < best_score:
                        iter_since_best += 1
                    else:
                        iter_since_best = 0
                        best_score = current_score
                    if iter_since_best >= n_early_stopping:
                        msg.text("Early stopping, best iteration "
                                 "is: {}".format(i - iter_since_best))
                        msg.text("Best score = {}; Final iteration "
                                 "score = {}".format(best_score,
                                                     current_score))
                        break
    finally:
        with nlp.use_params(optimizer.averages):
            final_model_path = output_path / "model-final"
            nlp.to_disk(final_model_path)
        msg.good("Saved model to output directory", final_model_path)
        with msg.loading("Creating best model..."):
            best_model_path = _collate_best_model(meta, output_path,
                                                  nlp.pipe_names)
        msg.good("Created best model", best_model_path)