def get_context(): global global_tc with lock: if global_tc is None: sparktkconf_dict = { 'spark.driver.memory': "3712m", 'spark.executor.instances': '5', 'spark.driver.cores': '1', 'spark.driver.extraJavaOptions': '-Xmx2688m', 'spark.driver.maxPermSize': '512m', 'spark.driver.maxResultSize': '2g', 'spark.dynamicAllocation.enabled': 'true', 'spark.dynamicAllocation.maxExecutors': '116', 'spark.dynamicAllocation.minExecutors': '1', 'spark.executor.cores': '1', 'spark.executor.extrajavaoptions': '-Xmx2688m', 'spark.executor.memory': '3200m', 'spark.shuffle.io.preferDirectBufs': 'false', 'spark.shuffle.service.enabled': 'true', 'spark.yarn.am.waitTime': '1000000', 'spark.yarn.driver.memoryOverhead': '384', 'spark.yarn.executor.memoryOverhead': '384', 'spark.eventLog.enabled': 'false', 'spark.sql.shuffle.partitions': '6' } if config.run_mode: global_tc = stk.TkContext(master='yarn-client', other_libs=[daaltk]) else: global_tc = stk.TkContext(other_libs=[daaltk]) return global_tc
def get_context(): global global_tc with lock: if global_tc is None: sparktkconf_dict = spark_context_config.get_spark_conf() if config.run_mode: global_tc = stk.TkContext(master='yarn-client', extra_conf_dict=sparktkconf_dict, py_files=udf_files) else: global_tc = stk.TkContext(py_files=udf_files) return global_tc
def test_graph_example(self): """Documentation test for classifiers""" # Get a context from the spark-tk library tc = sparktk.TkContext() # Graphs are composed of 2 sets, one of verticess, and one of edges # that connect exactly two (possibly not distinct) verticees. # The degree of a vertex is the number of edges attached to it # Below we build a frame using a vertex list and an edge list. vertex_frame = tc.frame.create( [["vertex1"], ["vertex2"], ["vertex3"], ["vertex4"], ["vertex5"]], [("id", str)]) edge_frame = tc.frame.create( [["vertex2", "vertex3"], ["vertex2", "vertex1"], ["vertex2", "vertex4"], ["vertex2", "vertex5"]], [("src", str), ("dst", str)]) # The graph is a center vertex on vertex2, with 4 verticess each # attached to the center vertex . This is known as a star graph, in # this configuration it can be visualized as a plus sign # To Create a graph first you define the vertices, and then the edges graph = tc.graph.create(vertex_frame, edge_frame) # get the degrees, which have known values degrees = graph.degrees() degree_list = degrees.take(5) known_list = [[u'vertex4', 1], [u'vertex1', 1], [u'vertex5', 1], [u'vertex2', 4], [u'vertex3', 1]] self.assertItemsEqual(known_list, degree_list)
def get_context(): global global_tc with lock: if global_tc is None: global_tc = stk.TkContext() return global_tc