Example #1
0
    def make_real_sand_matrix(self, x, y):
        r"""Make the superoperator matrix representation of

        N[X,Y](rho) = (1/2) ( X rho Y† + Y rho X† )

        In the basis {Λ_j}, N[X,Y](rho) = N(x,y)_jk rho_k Λ_j where

        N(x,y)_jk = Re[x_m (D_mlj + iF_mlj) (y*)_n (D_knl + iF_knl) ]

        Λ_j Λ_k = (D_jkl + iF_jkl) Λ_l

        x and y are vectorized representations of the operators X and Y stored
        in sparse format.

        `sparse.tensordot` might decide to return something dense, so the user
        should be aware of that.

        """
        result_A = sparse.tensordot(x, self.struct, ([0], [0]))
        result_B = sparse.tensordot(np.conj(y), self.struct, ([0], [1]))
        # sparse.tensordot fails if both arguments are numpy ndarrays, so we
        # force the intermediate arrays to be sparse
        if type(result_B) == np.ndarray:
            result_B = COO.from_numpy(result_B)
        if type(result_A) == np.ndarray:
            result_A = COO.from_numpy(result_A)
        result = sparse_real(sparse.tensordot(result_A, result_B, ([0], [1])))
        # We want our result to be dense, to make things predictable from the
        # outside.
        if type(result) == sparse.coo.COO:
            result = result.todense()
        return result.real
Example #2
0
    def make_real_comm_matrix(self, x, y):
        r"""Make the superoperator matrix representation of

        M[X,Y](rho) = (1/2) ( [X rho, Y†] + [Y, rho X†] )

        In the basis {Λ_j}, M[X,Y](rho) = M(x,y)_jk rho_k Λ_j where

        M(x,y)_jk = -2 Im[ (y*)_n F_lnj x_m (D_mkl + iF_mkl) ]

        Λ_j Λ_k = (D_jkl + iF_jkl) Λ_l

        x and y are vectorized representations of the operators X and Y stored
        in sparse format.

        `sparse.tensordot` might decide to return something dense, so the user
        should be aware of that.

        """
        struct_imag = sparse_imag(self.struct)
        # sparse.tensordot fails if both arguments are numpy ndarrays, so we
        # force the intermediate arrays to be sparse
        result_A = sparse.tensordot(np.conj(y), struct_imag, ([0], [1]))
        result_B = sparse.tensordot(x, self.struct, ([0], [0]))
        if type(result_B) == np.ndarray:
            result_B = COO.from_numpy(result_B)
        if type(result_A) == np.ndarray:
            result_A = COO.from_numpy(result_A)
        result = -2 * sparse_imag(sparse.tensordot(result_A, result_B,
                                                   ([0], [1])))
        # We want our result to be dense, to make things predictable from the
        # outside.
        if type(result) == sparse.coo.COO:
            result = result.todense()
        return result.real
Example #3
0
 def vectorize(self, op):
     sparse_op = COO.from_numpy(op)
     result = sparse.tensordot(self.dual, sparse_op, ([1,2], [1,0]))
     if type(result) == np.ndarray:
         # I want the result stored in a sparse format even if it isn't
         # sparse.
         result = COO.from_numpy(result)
     return result
Example #4
0
 def __init__(self, dim):
     self.dim = dim
     self.basis = COO.from_numpy(np.array(gm.get_basis(dim)))
     self.sq_norms = COO.from_numpy(np.einsum('jmn,jnm->j',
                                              self.basis.todense(),
                                              self.basis.todense()))
     sq_norms_inv = COO.from_numpy(1 / self.sq_norms.todense())
     self.dual = self.basis * sq_norms_inv[:,None,None]
     self.struct = sparse.tensordot(sparse.tensordot(self.basis, self.basis,
                                                     ([2], [1])),
                                    self.dual, ([1, 3], [2, 1]))
     if type(self.struct) == np.ndarray:
         # Sometimes sparse.tensordot returns numpy arrays. We want to force
         # it to be sparse, since sparse.tensordot fails when passed two
         # numpy arrays.
         self.struct = COO.from_numpy(self.struct)
Example #5
0
File: tests.py Project: CQuIC/pysme
def check_sparse_hamil_comm(sparse_basis, H, rho):
    h_vec = sparse_basis.vectorize(H)
    rho_vec = sparse_basis.vectorize(rho)
    dense_hamil_comm = -1j * mf.comm(H, rho)
    hamil_comm_matrix = sparse_basis.make_hamil_comm_matrix(h_vec)
    hamil_comm_vec = COO.from_numpy(hamil_comm_matrix @ rho_vec.todense())
    assert_almost_equal(np.abs(dense_hamil_comm -
                               sparse_basis.matrize(hamil_comm_vec)).max(),
                        0.0, 7)
Example #6
0
File: tests.py Project: CQuIC/pysme
def check_sparse_real_sand(sparse_basis, X, rho, Y):
    x_vec = sparse_basis.vectorize(X)
    y_vec = sparse_basis.vectorize(Y)
    rho_vec = sparse_basis.vectorize(rho)
    dense_real_sand = (X @ rho @ Y.conj().T + Y @ rho @ X.conj().T) / 2
    real_sand_matrix = sparse_basis.make_real_sand_matrix(x_vec, y_vec)
    real_sand_vec = COO.from_numpy(real_sand_matrix @ rho_vec.todense())
    assert_almost_equal(np.abs(dense_real_sand -
                               sparse_basis.matrize(real_sand_vec)).max(),
                        0.0, 7)
Example #7
0
File: tests.py Project: CQuIC/pysme
def check_sparse_real_comm(sparse_basis, X, rho, Y):
    x_vec = sparse_basis.vectorize(X)
    y_vec = sparse_basis.vectorize(Y)
    rho_vec = sparse_basis.vectorize(rho)
    dense_real_comm = (mf.comm(X @ rho, Y.conj().T) +
                       mf.comm(Y, rho @ X.conj().T)) / 2
    real_comm_matrix = sparse_basis.make_real_comm_matrix(x_vec, y_vec)
    real_comm_vec = COO.from_numpy(real_comm_matrix @ rho_vec.todense())
    assert_almost_equal(np.abs(dense_real_comm -
                               sparse_basis.matrize(real_comm_vec)).max(),
                        0.0, 7)
Example #8
0
 def test_original_is_copied(self, shift, ax):
     xs = sparse.random((10, 10), density=0.5)
     xc = COO(np.copy(xs.coords), np.copy(xs.data), shape=xs.shape)
     sparse.roll(xs, shift, axis=ax)
     assert_eq(xs, xc)
Example #9
0
def test_coord_dtype():
    s = sparse.random((2, 3, 4), density=0.5)
    assert s.coords.dtype == np.uint8

    s = COO.from_numpy(np.zeros(1000))
    assert s.coords.dtype == np.uint16
Example #10
0
def test_empty_reduction():
    x = np.zeros((2, 3, 4), dtype=np.float_)
    xs = COO.from_numpy(x)

    assert_eq(x.sum(axis=(0, 2)),
              xs.sum(axis=(0, 2)))
Example #11
0
def test_add_many_sparse_arrays():
    x = COO({(1, 1): 1})
    y = sum([x] * 100)
    assert y.nnz < np.prod(y.shape)
Example #12
0
def test_single_dimension():
    x = COO([1, 3], [1.0, 3.0])
    assert x.shape == (4,)
    assert_eq(x, np.array([0, 1.0, 0, 3.0]))
Example #13
0
def test_empty_shape():
    x = COO(np.empty((0, 1), dtype=np.int8), [1.0])
    assert x.shape == ()
    assert ((2 * x).todense() == np.array(2.0)).all()
Example #14
0
def test_reshape(a, b):
    x = random_x(a)
    s = COO.from_numpy(x)

    assert_eq(x.reshape(b), s.reshape(b))
Example #15
0
def test_slicing(index):
    x = random_x((2, 3, 4))
    s = COO.from_numpy(x)

    assert_eq(x[index], s[index])
Example #16
0
import pytest

import random
import numpy as np
import scipy.sparse
from sparse import COO

import sparse

x = np.zeros(shape=(2, 3, 4), dtype=np.float32)
for i in range(10):
    x[random.randint(0, x.shape[0] - 1),
      random.randint(0, x.shape[1] - 1),
      random.randint(0, x.shape[2] - 1)] = random.randint(0, 100)
y = COO.from_numpy(x)


def random_x(shape, dtype=float):
    x = np.zeros(shape=shape, dtype=float)
    for i in range(max(5, np.prod(x.shape) // 10)):
        x[tuple(random.randint(0, d - 1)
                for d in x.shape)] = random.randint(0, 100)
    return x


def assert_eq(x, y):
    assert x.shape == y.shape
    assert x.dtype == y.dtype
    if hasattr(x, 'todense'):
        xx = x.todense()
    else:
Example #17
0
def test_all_nan_reduction_warning(reduction, axis):
    x = random_value_array(np.nan, 1.0)(2 * 3 * 4).reshape(2, 3, 4)
    s = COO.from_numpy(x)

    with pytest.warns(RuntimeWarning):
        getattr(sparse, reduction)(s, axis=axis)
Example #18
0
def calculate_third(atoms,
                    replicated_atoms,
                    third_order_delta,
                    distance_threshold=None,
                    is_verbose=False):
    """
    Compute third order force constant matrices by using the central
    difference formula for the approximation
    """
    n_atoms = len(atoms.numbers)
    replicated_atoms = replicated_atoms
    n_replicas = int(replicated_atoms.positions.shape[0] / n_atoms)
    i_at_sparse = []
    i_coord_sparse = []
    jat_sparse = []
    j_coord_sparse = []
    k_sparse = []
    value_sparse = []
    n_forces_to_calculate = n_replicas * (n_atoms * 3)**2
    n_forces_done = 0
    n_forces_skipped = 0
    for iat in range(n_atoms):
        for jat in range(n_replicas * n_atoms):
            is_computing = True
            m, j_small = np.unravel_index(jat, (n_replicas, n_atoms))
            if (distance_threshold is not None):
                dxij = atoms.positions[iat] - (list_of_replicas[m] +
                                               atoms.positions[j_small])
                if (np.linalg.norm(dxij) > distance_threshold):
                    is_computing = False
                    n_forces_skipped += 9
            if is_computing:
                if is_verbose:
                    logging.info('calculating forces on atoms: ' + str(iat) +
                                 ',' + str(jat))
                for icoord in range(3):
                    for jcoord in range(3):
                        value = calculate_single_third(atoms, replicated_atoms,
                                                       iat, icoord, jat,
                                                       jcoord,
                                                       third_order_delta)
                        for id in range(value.shape[0]):
                            i_at_sparse.append(iat)
                            i_coord_sparse.append(icoord)
                            jat_sparse.append(jat)
                            j_coord_sparse.append(jcoord)
                            k_sparse.append(id)
                            value_sparse.append(value[id])
                n_forces_done += 9
            if (n_forces_done + n_forces_skipped % 300) == 0:
                logging.info('Calculate third derivatives ' + str(
                    int((n_forces_done + n_forces_skipped) /
                        n_forces_to_calculate * 100)) + '%')

    logging.info('total forces to calculate third : ' +
                 str(n_forces_to_calculate))
    logging.info('forces calculated : ' + str(n_forces_done))
    logging.info('forces skipped (outside distance threshold) : ' +
                 str(n_forces_skipped))
    coords = np.array(
        [i_at_sparse, i_coord_sparse, jat_sparse, j_coord_sparse, k_sparse])
    shape = (n_atoms, 3, n_replicas * n_atoms, 3, n_replicas * n_atoms * 3)
    phifull = COO(coords, np.array(value_sparse), shape)
    phifull = phifull.reshape \
        ((n_atoms * 3, n_replicas * n_atoms * 3, n_replicas * n_atoms * 3))
    return phifull