Example #1
0
def jacobi_method(A, b, iterations=5, startvector=None, w=1, threshold=0.1, full_output=False):
    
    if isinstance(A, SparseMatrix):
        Dinvers_content = {key: 1/A[key] for key in A.content.keys() if key[0] == key[1]}
        D_invers = SparseMatrix([], [], [], shape=A.shape)
        D_invers.content = Dinvers_content
        Diw = D_invers * w
    else:
        Dinvers = np.zeros(A.shape)
        np.fill_diagonal(Dinvers, 1/4)
        Diw = Dinvers * w
        
        
    if startvector is not None:
        x_old = startvector
    else:
        x_old = np.zeros(b.shape)
    
    if full_output:
        residua = []
    for k in range(iterations):
        # Vorlesung 21.04 S. 4
        residuum = (b - (A @ x_old))
        if full_output:
            residua.append(np.linalg.norm(residuum))
        x_new = x_old + Diw @ residuum
        if residuum.max() < threshold and threshold > 0:
            print(residuum.max(), k)
            break
        x_old = x_new
    
    if full_output:
        return x_new, residua
    return x_new
Example #2
0
    def test_transposed(self):
        a = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 1, 2])
        self.assertEqual(a, a.T)

        b = SparseMatrix([1, 1, 1], [0, 0, 0], [0, 1, 2])
        c = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 0, 0])
        self.assertEqual(b, c.T)
Example #3
0
    def test_mul(self):
        a = SparseMatrix([1, 2, 3], [0, 1, 0], [1, 2, 0])
        b = 2
        c = SparseMatrix([2, 4, 6], [0, 1, 0], [1, 2, 0])

        self.assertEqual(a * b, c)
        print(b * a)
        self.assertEqual(b * a, c)
Example #4
0
    def test_radd(self):
        a = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 1, 2], shape=(3, 3))
        b = SparseMatrix([1, 1, 1], [1, 1, 1], [0, 1, 2], shape=(3, 3))
        c = SparseMatrix([1, 1, 2, 1, 1], [0, 1, 1, 1, 2], [0, 0, 1, 2, 2])

        self.assertEqual(a, 0 + a)

        d = sum([a, b])

        self.assertEqual(c, d)
Example #5
0
    def test_jacobi(self):
        A = SparseMatrix([4, -2, 1, -1, 5, -2, 1, 1, 3],
                         [0, 0, 0, 1, 1, 1, 2, 2, 2],
                         [0, 1, 2, 0, 1, 2, 0, 1, 2])
        b = SparseMatrix([2, 4, 6], [0, 1, 2], [0, 0, 0])
        x0 = SparseMatrix([1, 2, 1], [0, 1, 2], [0, 0, 0])

        x1 = SparseMatrix([0.25, 1.4, 1], [0, 1, 2], [0, 0, 0])
        res = jacobi_method(A, b, iterations=1, startvector=x0, w=1)
        print(res)
        self.assertEqual(x1, res)
Example #6
0
def question2():
    first_image1 = np.array(MNIST_DATASET[0].tolist())
    n, m, coord = array_to_coord(first_image1)
    mat = SparseMatrix(fromiter=coord, shape=(n, m))
    first_image2 = mat.todense()
    for i in range(n):
        for j in range(m):
            if not first_image1[i, j] == first_image2[i, j]:
                print('Erreur, les images sont differentes')
                return None
    print('Les deux images sont identiques')
    return None
Example #7
0
def SOR(A, b, iterations=5, startvector=None, w=1/2, threshold=0.1, full_output=False):
    
    # D = {key: A[key] for key in A.content.keys() if key[0] == key[1]}
    # R = {key: A[key] for key in A.content.keys() if key[0] < key[1]}
    # L = {key: A[key] for key in A.content.keys() if key[0] > key[1]}
    # I = {key: 1 for key in A.content.keys() if key[0] == key[1]}

    # for i in 1 ... laenge x
    # berechne si
    # berechne xi
    # Gauß-Seidel: -> berechne die si mit den geupdateten xi (in jacobi würde man ERST ALLE si berechnen)
    # für k+1: s_i = A_zeile_i * x^k
    # für k+1 für die i-te komponente: x^k+1_i = x^k_i - w/(A_i,i) * (s_i - b_i)
    # Jacobi si, si, si, ..., xi, xi, xi, ...
    # Gauß-Seidel si, xi, si, xi, ...
    # SOR -> 1/(A-i,i) wird zu w/(A_i,i)
    
    
    # aus dem video
    x_old = startvector or SparseMatrix([], [], [], shape=b.shape)
    x_new = startvector or SparseMatrix([], [], [], shape=b.shape)
    
    if full_output:
        residua = []
    for k in range(iterations):
        for i in range(b.shape[0]):
            
            #A_i_content = {key: A[key] for key in A.content.keys() if key[0] == i}
            A_i_content = {(0, key[1]): A[key] for key in A.content.keys() if key[0] == i}# hier war der fehler
            A_i = SparseMatrix([], [], [], shape=(1, A.shape[1]))
            A_i.content = A_i_content
#            print("Ai ", A_i)
            
            s_i = (A_i @ x_old)
            wert = s_i[0, 0]
            # print(A_i, " @ ", x_old, "=", s_i)
            # print("s", i, " = ", wert)
            x_new[i, 0] = x_old[i, 0] - w/(A[i,i]) * (wert - b[i, 0])
            x_old = 1 * x_new # TODO: copy methode implementieren
        residuum = (b - (A @ x_old))
        if full_output:
            residua.append(max(residuum.content.values()))
        if max(residuum.content.values()) < threshold:
            break
        # eine Iteration, ein mal den Lösungsvektor
        # if ...:
        #     break
    # k Iterations

    if full_output:
        return x_new, residua
    
    return x_old
Example #8
0
    def test_matmul(self):
        # test shape
        a = SparseMatrix([], [], [], shape=(3, 5))
        b = SparseMatrix([], [], [], shape=(5, 7))
        self.assertEqual((3, 7), (a @ b).shape)

        #example from Wikipedia
        a = SparseMatrix([3, 2, 1, 1, 2], [0, 0, 0, 1, 1], [0, 1, 2, 0, 2])
        b = SparseMatrix([1, 2, 1, 4], [0, 0, 1, 2], [0, 1, 1, 0])
        c = SparseMatrix([7, 8, 9, 2], [0, 0, 1, 1], [0, 1, 0, 1])

        self.assertEqual(c, a @ b)
Example #9
0
    def test_add(self):
        a = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 1, 2], shape=(3, 3))
        b = SparseMatrix([1, 1, 1], [1, 1, 1], [0, 1, 2], shape=(3, 3))
        c = SparseMatrix([1, 1, 2, 1, 1], [0, 1, 1, 1, 2], [0, 0, 1, 2, 2])

        d = SparseMatrix([1, -1, -1, 1], [0, 1, 1, 2], [0, 0, 2, 2],
                         shape=(3, 3))

        self.assertEqual(c, a + b)
        self.assertEqual(d, a - b)

        e = SparseMatrix([], [], [], shape=(10, 10))
        self.assertRaises(ArithmeticError, a.__add__, e)
Example #10
0
    def test_shape_parameter(self):
        values = [1, 2]
        row = [0, 1]
        col = [0, 1]
        a = SparseMatrix(values, row, col)
        b = SparseMatrix(values, row, col, shape=(3, 4))
        c = SparseMatrix([1, 1], [12, 23], [7, 9])

        self.assertEqual(a.shape, (2, 2))
        self.assertEqual(b.shape, (3, 4))
        self.assertRaises(IndexError, a.__getitem__, (2, 3))
        self.assertEqual(b[2, 3], 0)
        self.assertEqual(c.shape, (24, 10))
Example #11
0
    def test_equals(self):
        a = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 1, 2])

        b = SparseMatrix([1, 1, 1], [2, 1, 0], [2, 1, 0])

        c = SparseMatrix([1, 1, 1], [2, 0, 1], [2, 0, 1])

        d = SparseMatrix([1, 1, 1, 0], [0, 1, 2, 1], [0, 1, 2, 2])

        e = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 1, 2], shape=(4, 4))

        self.assertEqual(a, b)
        self.assertEqual(a, c)
        self.assertEqual(b, c)
        self.assertEqual(a, d)
        self.assertNotEqual(a, e)
Example #12
0
    def test_non_zero_indexing(self):
        values = [1, 2, 3, 4]
        row = [1, 2, 3, 4]
        col = [1, 2, 3, 4]
        mat = SparseMatrix(values, row, col)

        self.assertEqual(mat[1, 1], 1)
        self.assertEqual(mat[2, 2], 2)
        self.assertEqual(mat[3, 3], 3)
        self.assertEqual(mat[4, 4], 4)
Example #13
0
    def test_zero_indexing(self):
        values = [1, 2, 3, 4]
        row = [1, 2, 3, 4]
        col = [1, 2, 3, 4]
        mat = SparseMatrix(values, row, col)

        self.assertEqual(mat[0, 0], 0)
        self.assertEqual(mat[1, 2], 0)
        self.assertEqual(mat[3, 4], 0)
        self.assertEqual(mat[4, 3], 0)
Example #14
0
    def test_out_of_range_indexing(self):
        values = [1, 2, 3, 4]
        row = [1, 2, 3, 4]
        col = [1, 2, 3, 4]
        mat = SparseMatrix(values, row, col)

        self.assertRaises(IndexError, mat.__getitem__, (0, -1))
        self.assertRaises(IndexError, mat.__getitem__, (-1, 0))
        self.assertRaises(IndexError, mat.__getitem__, (0, 5))
        self.assertRaises(IndexError, mat.__getitem__, (5, 0))
Example #15
0
    def test_setitem(self):
        a = SparseMatrix([1, 1, 1], [0, 1, 2], [0, 1, 2])
        self.assertEqual(a[0, 0], 1)
        a[0, 0] = 5
        self.assertEqual(a[0, 0], 5)

        self.assertEqual(a[0, 2], 0)
        a[0, 2] = 5
        self.assertEqual(a[0, 2], 5)

        self.assertRaises(IndexError, a.__setitem__, (0, 3), 5)
def calc_pmi(X_Y_C):
    P = SparseMatrix()
    X_C, Y_C = Counter(), Counter()
    x_y_sum = 0
    for x, x_Y_C in X_Y_C.items():
        for y, c in x_Y_C.items():
            X_C[x] += c
            Y_C[y] += c
            x_y_sum += c
    for x, x_Y_C in X_Y_C.items():
        for y, c in x_Y_C.items():
            P[x, y] = log2((c * x_y_sum) / (X_C[x] * Y_C[y]))
    return P
Example #17
0
    # k Iterations

    if full_output:
        return x_new, residua
    
    return x_old

if __name__ == '__main__':
    
    ## example from the english wikipedia
    # https://en.wikipedia.org/wiki/Jacobi_method
#    A = SparseMatrix([2, 1, 5, 7], [0, 0, 1, 1], [0, 1, 0, 1])
#    b = SparseMatrix([11, 13], [0, 1], [0, 0])
#    x0 = SparseMatrix([1, 1], [0, 1], [0, 0])
    
    A = SparseMatrix([4, -2, 1, -1, 5, -2, 1, 1, 3], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2])
    b = SparseMatrix([2, 4, 6], [0, 1, 2], [0, 0, 0])
    x0 = SparseMatrix([1, 2, 1], [0, 1, 2], [0, 0, 0])
    
    x_jac1 = SparseMatrix([1.25, 1.4, 1], [0, 1, 2], [0, 0, 0])
    x_gasei1 = SparseMatrix([1.25, 1.45, 1.1], [0, 1, 2], [0, 0, 0])
    
    print("--- JACOBI ---")
    # res = jacobi_method(A, b, iterations=1, w=1)
    # print("1 iterations: ", res)
    # # print("EXPECTED: 1 iterations: ", x_jac1)
    
    # res = jacobi_method(A, b, iterations=2, w=1)
    # print("2 iterations: ", res)
    
    res, residua = jacobi_method(A, b, iterations=25, w=1, full_output=True)
Example #18
0
 def _new(cls, *args, **kwargs):
     s = SparseMatrix(*args)
     rows = Integer(s.rows)
     cols = Integer(s.cols)
     mat = Dict(s._smat)
     return Basic.__new__(cls, rows, cols, mat)
Example #19
0
from matplotlib import pyplot as plt

#%% load data

# a_ij = (np.loadtxt("./test_data/a_ij.dat")).tolist()
# i_index = (np.loadtxt("./test_data/i.dat", dtype=int)).tolist()
# j_index = (np.loadtxt("./test_data/j.dat", dtype=int)).tolist()
# b_vector = (np.loadtxt("./test_data/b.dat")).tolist()

# %% generate sparse matrizes

# A = SparseMatrix(a_ij, i_index, j_index)
# b = SparseMatrix(b_vector, list(range(A.shape[0])), [0 for i in range(A.shape[1])])

#%%
A = SparseMatrix([4, -2, 1, -1, 5, -2, 1, 1, 3], [0, 0, 0, 1, 1, 1, 2, 2, 2],
                 [0, 1, 2, 0, 1, 2, 0, 1, 2])
b = SparseMatrix([2, 4, 6], [0, 1, 2], [0, 0, 0])
#x0 = SparseMatrix([1, 2, 1], [0, 1, 2], [0, 0, 0])
# %% run linsolve Methods

th = 0.0001
max_its = 10

print('jacobi')
jacobi_res, jacobi_resids = jacobi_method(A,
                                          b,
                                          threshold=th,
                                          iterations=max_its,
                                          full_output=True)

print('gaus seidel')
Example #20
0
import numpy as np
import math as math
import matplotlib.pyplot as plt
from sparse import SparseMatrix
%matplotlib inline

# Importation des donnes MNIST
mnist_dataset = np.memmap('train-images-idx3-ubyte', offset=16, shape=(60000, 28, 28))

premiere_image = mnist_dataset[0].tolist() # first_image est de taille (28, 28)
encodage_premiere_image = SparseMatrix(premiere_image,(28,28))
premiere_image_encode_decode = encodage_premiere_image.todense()

plt.imshow(premiere_image, cmap='gray_r')
plt.show()
plt.imshow(encodage_premiere_image.todense(), cmap='gray_r')
plt.show()

# Comparaison Pixel par Pixel

pas_pareil = False
for i in range(len(premiere_image)):
    for j in range(len(premiere_image[i])):

        if premiere_image[i][j] != premiere_image_encode_decode[i][j]:
            print(premiere_image[i][j])
            print(premiere_image_encode_decode[i][j])
            print(i)
            print(j)
            print("\n")
            pas_pareil = True