num_pos_va = np.array((y_class_va == +1).sum(0)).flatten() num_neg_va = np.array((y_class_va == -1).sum(0)).flatten() num_regr_va = np.bincount(y_regr_va.indices, minlength=y_regr.shape[1]) batch_size = int(np.ceil(args.batch_ratio * idx_tr.shape[0])) num_int_batches = 1 if args.internal_batch_max is not None: if args.internal_batch_max < batch_size: num_int_batches = int(np.ceil(batch_size / args.internal_batch_max)) batch_size = int(np.ceil(batch_size / num_int_batches)) vprint(f"#internal batch size: {batch_size}") dataset_tr = sc.ClassRegrSparseDataset(x=ecfp[idx_tr], y_class=y_class_tr, y_regr=y_regr_tr, y_censor=y_censor_tr) dataset_va = sc.ClassRegrSparseDataset(x=ecfp[idx_va], y_class=y_class_va, y_regr=y_regr_va, y_censor=y_censor_va) loader_tr = DataLoader(dataset_tr, batch_size=batch_size, num_workers=8, pin_memory=True, collate_fn=dataset_tr.collate, shuffle=True) loader_va = DataLoader(dataset_va, batch_size=batch_size, num_workers=4,
def train(): if torch.cuda.is_available(): nvmlInit() multiprocessing.set_start_method('fork', force=True) parser = argparse.ArgumentParser( description="Training a multi-task model.") parser.add_argument("--x", help="Descriptor file (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--y_class", "--y", "--y_classification", help="Activity file (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--y_regr", "--y_regression", help="Activity file (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument( "--y_censor", help="Censor mask for regression (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument( "--weights_class", "--task_weights", "--weights_classification", help= "CSV file with columns task_id, training_weight, aggregation_weight, task_type (for classification tasks)", type=str, default=None) parser.add_argument( "--weights_regr", "--weights_regression", help= "CSV file with columns task_id, training_weight, censored_weight, aggregation_weight, aggregation_weight, task_type (for regression tasks)", type=str, default=None) parser.add_argument( "--censored_loss", help="Whether censored loss is used for training (default 1)", type=int, default=1) parser.add_argument("--folding", help="Folding file (npy)", type=str, required=True) parser.add_argument("--fold_va", help="Validation fold number", type=int, default=0) parser.add_argument("--fold_te", help="Test fold number (removed from dataset)", type=int, default=None) parser.add_argument("--batch_ratio", help="Batch ratio", type=float, default=0.02) parser.add_argument("--internal_batch_max", help="Maximum size of the internal batch", type=int, default=None) parser.add_argument( "--normalize_loss", help= "Normalization constant to divide the loss (default uses batch size)", type=float, default=None) parser.add_argument( "--normalize_regression", help="Set this to 1 if the regression tasks should be normalized", type=int, default=0) parser.add_argument( "--normalize_regr_va", help= "Set this to 1 if the regression tasks in validation fold should be normalized together with training folds", type=int, default=0) parser.add_argument( "--inverse_normalization", help= "Set this to 1 if the regression tasks in validation fold should be inverse normalized at validation time", type=int, default=0) parser.add_argument("--hidden_sizes", nargs="+", help="Hidden sizes of trunk", default=[], type=int, required=True) parser.add_argument( "--last_hidden_sizes", nargs="+", help= "Hidden sizes in the head (if specified , class and reg heads have this dimension)", default=None, type=int) #parser.add_argument("--middle_dropout", help="Dropout for layers before the last", type=float, default=0.0) #parser.add_argument("--last_dropout", help="Last dropout", type=float, default=0.2) parser.add_argument("--weight_decay", help="Weight decay", type=float, default=0.0) parser.add_argument("--last_non_linearity", help="Last layer non-linearity (depecrated)", type=str, default="relu", choices=["relu", "tanh"]) parser.add_argument("--middle_non_linearity", "--non_linearity", help="Before last layer non-linearity", type=str, default="relu", choices=["relu", "tanh"]) parser.add_argument("--input_transform", help="Transformation to apply to inputs", type=str, default="none", choices=["binarize", "none", "tanh", "log1p"]) parser.add_argument("--lr", help="Learning rate", type=float, default=1e-3) parser.add_argument("--lr_alpha", help="Learning rate decay multiplier", type=float, default=0.3) parser.add_argument("--lr_steps", nargs="+", help="Learning rate decay steps", type=int, default=[10]) parser.add_argument("--input_size_freq", help="Number of high importance features", type=int, default=None) parser.add_argument("--fold_inputs", help="Fold input to a fixed set (default no folding)", type=int, default=None) parser.add_argument("--epochs", help="Number of epochs", type=int, default=20) parser.add_argument( "--pi_zero", help="Reference class ratio to be used for calibrated aucpr", type=float, default=0.1) parser.add_argument( "--min_samples_class", help= "Minimum number samples in each class and in each fold for AUC calculation (only used if aggregation_weight is not provided in --weights_class)", type=int, default=5) parser.add_argument("--min_samples_auc", help="Obsolete: use 'min_samples_class'", type=int, default=None) parser.add_argument( "--min_samples_regr", help= "Minimum number of uncensored samples in each fold for regression metric calculation (only used if aggregation_weight is not provided in --weights_regr)", type=int, default=10) parser.add_argument("--dev", help="Device to use", type=str, default="cuda:0") parser.add_argument("--run_name", help="Run name for results", type=str, default=None) parser.add_argument( "--output_dir", help="Output directory, including boards (default 'models')", type=str, default="models") parser.add_argument("--prefix", help="Prefix for run name (default 'run')", type=str, default='run') parser.add_argument( "--verbose", help="Verbosity level: 2 = full; 1 = no progress; 0 = no output", type=int, default=2, choices=[0, 1, 2]) parser.add_argument("--save_model", help="Set this to 0 if the model should not be saved", type=int, default=1) parser.add_argument( "--save_board", help="Set this to 0 if the TensorBoard should not be saved", type=int, default=1) parser.add_argument( "--profile", help="Set this to 1 to output memory profile information", type=int, default=0) parser.add_argument( "--mixed_precision", help= "Set this to 1 to run in mixed precision mode (vs single precision)", type=int, default=0) parser.add_argument("--eval_train", help="Set this to 1 to calculate AUCs for train data", type=int, default=0) parser.add_argument("--enable_cat_fusion", help="Set this to 1 to enable catalogue fusion", type=int, default=0) parser.add_argument( "--eval_frequency", help= "The gap between AUC eval (in epochs), -1 means to do an eval at the end.", type=int, default=1) #hybrid model features parser.add_argument( "--regression_weight", help= "between 0 and 1 relative weight of regression loss vs classification loss", type=float, default=0.5) parser.add_argument( "--scaling_regularizer", help= "L2 regularizer of the scaling layer, if inf scaling layer is switched off", type=float, default=np.inf) parser.add_argument( "--class_feature_size", help= "Number of leftmost features used from the output of the trunk (default: use all)", type=int, default=-1) parser.add_argument( "--regression_feature_size", help= "Number of rightmost features used from the output of the trunk (default: use all)", type=int, default=-1) parser.add_argument( "--last_hidden_sizes_reg", nargs="+", help= "Hidden sizes in the regression head (overwritten by last_hidden_sizes)", default=None, type=int) parser.add_argument( "--last_hidden_sizes_class", nargs="+", help= "Hidden sizes in the classification head (overwritten by last_hidden_sizes)", default=None, type=int) parser.add_argument( "--dropouts_reg", nargs="+", help= "List of dropout values used in the regression head (needs one per last hidden in reg head, ignored if last_hidden_sizes_reg not specified)", default=[], type=float) parser.add_argument( "--dropouts_class", nargs="+", help= "List of dropout values used in the classification head (needs one per last hidden in class head, ignored if no last_hidden_sizes_class not specified)", default=[], type=float) parser.add_argument("--dropouts_trunk", nargs="+", help="List of dropout values used in the trunk", default=[], type=float, required=True) args = parser.parse_args() if (args.last_hidden_sizes is not None) and ((args.last_hidden_sizes_class is not None) or (args.last_hidden_sizes_reg is not None)): raise ValueError( "Head specific and general last_hidden_sizes argument were both specified!" ) if (args.last_hidden_sizes is not None): args.last_hidden_sizes_class = args.last_hidden_sizes args.last_hidden_sizes_reg = args.last_hidden_sizes if args.last_hidden_sizes_reg is not None: assert len(args.last_hidden_sizes_reg) == len( args.dropouts_reg ), "Number of hiddens and number of dropout values specified must be equal in the regression head!" if args.last_hidden_sizes_class is not None: assert len(args.last_hidden_sizes_class) == len( args.dropouts_class ), "Number of hiddens and number of dropout values specified must be equal in the classification head!" if args.hidden_sizes is not None: assert len(args.hidden_sizes) == len( args.dropouts_trunk ), "Number of hiddens and number of dropout values specified must be equal in the trunk!" def vprint(s=""): if args.verbose: print(s) vprint(args) if args.class_feature_size == -1: args.class_feature_size = args.hidden_sizes[-1] if args.regression_feature_size == -1: args.regression_feature_size = args.hidden_sizes[-1] assert args.regression_feature_size <= args.hidden_sizes[ -1], "Regression feature size cannot be larger than the trunk output" assert args.class_feature_size <= args.hidden_sizes[ -1], "Classification feature size cannot be larger than the trunk output" assert args.regression_feature_size + args.class_feature_size >= args.hidden_sizes[ -1], "Unused features in the trunk! Set regression_feature_size + class_feature_size >= trunk output!" #if args.regression_feature_size != args.hidden_sizes[-1] or args.class_feature_size != args.hidden_sizes[-1]: # raise ValueError("Hidden spliting not implemented yet!") if args.run_name is not None: name = args.run_name else: name = f"sc_{args.prefix}_h{'.'.join([str(h) for h in args.hidden_sizes])}_ldo_r{'.'.join([str(d) for d in args.dropouts_reg])}_wd{args.weight_decay}" name += f"_lr{args.lr}_lrsteps{'.'.join([str(s) for s in args.lr_steps])}_ep{args.epochs}" name += f"_fva{args.fold_va}_fte{args.fold_te}" if args.mixed_precision == 1: name += f"_mixed_precision" vprint(f"Run name is '{name}'.") if args.profile == 1: assert ( args.save_board == 1 ), "Tensorboard should be enabled to be able to profile memory usage." if args.save_board: tb_name = os.path.join(args.output_dir, "boards", name) writer = SummaryWriter(tb_name) else: writer = Nothing() assert args.input_size_freq is None, "Using tail compression not yet supported." if (args.y_class is None) and (args.y_regr is None): raise ValueError( "No label data specified, please add --y_class and/or --y_regr.") ecfp = sc.load_sparse(args.x) y_class = sc.load_sparse(args.y_class) y_regr = sc.load_sparse(args.y_regr) y_censor = sc.load_sparse(args.y_censor) if (y_regr is None) and (y_censor is not None): raise ValueError("y_censor provided please also provide --y_regr.") if y_class is None: y_class = scipy.sparse.csr_matrix((ecfp.shape[0], 0)) if y_regr is None: y_regr = scipy.sparse.csr_matrix((ecfp.shape[0], 0)) if y_censor is None: y_censor = scipy.sparse.csr_matrix(y_regr.shape) folding = np.load(args.folding) assert ecfp.shape[0] == folding.shape[ 0], "x and folding must have same number of rows" ## Loading task weights tasks_class = sc.load_task_weights(args.weights_class, y=y_class, label="y_class") tasks_regr = sc.load_task_weights(args.weights_regr, y=y_regr, label="y_regr") ## Input transformation ecfp = sc.fold_transform_inputs(ecfp, folding_size=args.fold_inputs, transform=args.input_transform) print(f"count non zero:{ecfp[0].count_nonzero()}") num_pos = np.array((y_class == +1).sum(0)).flatten() num_neg = np.array((y_class == -1).sum(0)).flatten() num_class = np.array((y_class != 0).sum(0)).flatten() if (num_class != num_pos + num_neg).any(): raise ValueError( "For classification all y values (--y_class/--y) must be 1 or -1.") num_regr = np.bincount(y_regr.indices, minlength=y_regr.shape[1]) assert args.min_samples_auc is None, "Parameter 'min_samples_auc' is obsolete. Use '--min_samples_class' that specifies how many samples a task needs per FOLD and per CLASS to be aggregated." if tasks_class.aggregation_weight is None: ## using min_samples rule fold_pos, fold_neg = sc.class_fold_counts(y_class, folding) n = args.min_samples_class tasks_class.aggregation_weight = ((fold_pos >= n).all(0) & (fold_neg >= n)).all(0).astype( np.float64) if tasks_regr.aggregation_weight is None: if y_censor.nnz == 0: y_regr2 = y_regr.copy() y_regr2.data[:] = 1 else: ## only counting uncensored data y_regr2 = y_censor.copy() y_regr2.data = (y_regr2.data == 0).astype(np.int32) fold_regr, _ = sc.class_fold_counts(y_regr2, folding) del y_regr2 tasks_regr.aggregation_weight = ( fold_regr >= args.min_samples_regr).all(0).astype(np.float64) vprint(f"Input dimension: {ecfp.shape[1]}") vprint(f"#samples: {ecfp.shape[0]}") vprint(f"#classification tasks: {y_class.shape[1]}") vprint(f"#regression tasks: {y_regr.shape[1]}") vprint( f"Using {(tasks_class.aggregation_weight > 0).sum()} classification tasks for calculating aggregated metrics (AUCROC, F1_max, etc)." ) vprint( f"Using {(tasks_regr.aggregation_weight > 0).sum()} regression tasks for calculating metrics (RMSE, Rsquared, correlation)." ) if args.fold_te is not None and args.fold_te >= 0: ## removing test data assert args.fold_te != args.fold_va, "fold_va and fold_te must not be equal." keep = folding != args.fold_te ecfp = ecfp[keep] y_class = y_class[keep] y_regr = y_regr[keep] y_censor = y_censor[keep] folding = folding[keep] normalize_inv = None if args.normalize_regression == 1 and args.normalize_regr_va == 1: y_regr, mean_save, var_save = sc.normalize_regr(y_regr) fold_va = args.fold_va idx_tr = np.where(folding != fold_va)[0] idx_va = np.where(folding == fold_va)[0] y_class_tr = y_class[idx_tr] y_class_va = y_class[idx_va] y_regr_tr = y_regr[idx_tr] y_regr_va = y_regr[idx_va] y_censor_tr = y_censor[idx_tr] y_censor_va = y_censor[idx_va] if args.normalize_regression == 1 and args.normalize_regr_va == 0: y_regr_tr, mean_save, var_save = sc.normalize_regr(y_regr_tr) if args.inverse_normalization == 1: normalize_inv = {} normalize_inv["mean"] = mean_save normalize_inv["var"] = var_save num_pos_va = np.array((y_class_va == +1).sum(0)).flatten() num_neg_va = np.array((y_class_va == -1).sum(0)).flatten() num_regr_va = np.bincount(y_regr_va.indices, minlength=y_regr.shape[1]) pos_rate = num_pos_va / (num_pos_va + num_neg_va) pos_rate_ref = args.pi_zero pos_rate = np.clip(pos_rate, 0, 0.99) cal_fact_aucpr = pos_rate * (1 - pos_rate_ref) / (pos_rate_ref * (1 - pos_rate)) #import ipdb; ipdb.set_trace() batch_size = int(np.ceil(args.batch_ratio * idx_tr.shape[0])) num_int_batches = 1 if args.internal_batch_max is not None: if args.internal_batch_max < batch_size: num_int_batches = int(np.ceil(batch_size / args.internal_batch_max)) batch_size = int(np.ceil(batch_size / num_int_batches)) vprint(f"#internal batch size: {batch_size}") tasks_cat_id_list = None select_cat_ids = None if tasks_class.cat_id is not None: tasks_cat_id_list = [[x, i] for i, x in enumerate(tasks_class.cat_id) if str(x) != 'nan'] tasks_cat_ids = [ i for i, x in enumerate(tasks_class.cat_id) if str(x) != 'nan' ] select_cat_ids = np.array(tasks_cat_ids) cat_id_size = len(tasks_cat_id_list) else: cat_id_size = 0 dataset_tr = sc.ClassRegrSparseDataset(x=ecfp[idx_tr], y_class=y_class_tr, y_regr=y_regr_tr, y_censor=y_censor_tr, y_cat_columns=select_cat_ids) dataset_va = sc.ClassRegrSparseDataset(x=ecfp[idx_va], y_class=y_class_va, y_regr=y_regr_va, y_censor=y_censor_va, y_cat_columns=select_cat_ids) loader_tr = DataLoader(dataset_tr, batch_size=batch_size, num_workers=8, pin_memory=True, collate_fn=dataset_tr.collate, shuffle=True) loader_va = DataLoader(dataset_va, batch_size=batch_size, num_workers=4, pin_memory=True, collate_fn=dataset_va.collate, shuffle=False) args.input_size = dataset_tr.input_size args.output_size = dataset_tr.output_size args.class_output_size = dataset_tr.class_output_size args.regr_output_size = dataset_tr.regr_output_size args.cat_id_size = cat_id_size dev = torch.device(args.dev) net = sc.SparseFFN(args).to(dev) loss_class = torch.nn.BCEWithLogitsLoss(reduction="none") loss_regr = sc.censored_mse_loss if not args.censored_loss: loss_regr = functools.partial(loss_regr, censored_enabled=False) tasks_class.training_weight = tasks_class.training_weight.to(dev) tasks_regr.training_weight = tasks_regr.training_weight.to(dev) tasks_regr.censored_weight = tasks_regr.censored_weight.to(dev) vprint("Network:") vprint(net) reporter = None h = None if args.profile == 1: torch_gpu_id = torch.cuda.current_device() if "CUDA_VISIBLE_DEVICES" in os.environ: ids = list( map(int, os.environ.get("CUDA_VISIBLE_DEVICES", "").split(","))) nvml_gpu_id = ids[torch_gpu_id] # remap else: nvml_gpu_id = torch_gpu_id h = nvmlDeviceGetHandleByIndex(nvml_gpu_id) if args.profile == 1: ##### output saving ##### if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) reporter = MemReporter(net) with open(f"{args.output_dir}/memprofile.txt", "w+") as profile_file: with redirect_stdout(profile_file): profile_file.write(f"\nInitial model detailed report:\n\n") reporter.report() optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_alpha) num_prints = 0 scaler = torch.cuda.amp.GradScaler() for epoch in range(args.epochs): t0 = time.time() sc.train_class_regr(net, optimizer, loader=loader_tr, loss_class=loss_class, loss_regr=loss_regr, dev=dev, weights_class=tasks_class.training_weight * (1 - args.regression_weight) * 2, weights_regr=tasks_regr.training_weight * args.regression_weight * 2, censored_weight=tasks_regr.censored_weight, normalize_loss=args.normalize_loss, num_int_batches=num_int_batches, progress=args.verbose >= 2, reporter=reporter, writer=writer, epoch=epoch, args=args, scaler=scaler, nvml_handle=h) if args.profile == 1: with open(f"{args.output_dir}/memprofile.txt", "a+") as profile_file: profile_file.write( f"\nAfter epoch {epoch} model detailed report:\n\n") with redirect_stdout(profile_file): reporter.report() t1 = time.time() eval_round = (args.eval_frequency > 0) and ((epoch + 1) % args.eval_frequency == 0) last_round = epoch == args.epochs - 1 if eval_round or last_round: results_va = sc.evaluate_class_regr(net, loader_va, loss_class, loss_regr, tasks_class=tasks_class, tasks_regr=tasks_regr, dev=dev, progress=args.verbose >= 2, normalize_inv=normalize_inv, cal_fact_aucpr=cal_fact_aucpr) # import ipdb; ipdb.set_trace() for key, val in results_va["classification_agg"].items(): writer.add_scalar(key + "/va", val, epoch) for key, val in results_va["regression_agg"].items(): writer.add_scalar(key + "/va", val, epoch) if args.eval_train: results_tr = sc.evaluate_class_regr(net, loader_tr, loss_class, loss_regr, tasks_class=tasks_class, tasks_regr=tasks_regr, dev=dev, progress=args.verbose >= 2) for key, val in results_tr["classification_agg"].items(): writer.add_scalar(key + "/tr", val, epoch) for key, val in results_tr["regression_agg"].items(): writer.add_scalar(key + "/tr", val, epoch) else: results_tr = None if args.verbose: ## printing a new header every 20 lines header = num_prints % 20 == 0 num_prints += 1 sc.print_metrics_cr(epoch, t1 - t0, results_tr, results_va, header) scheduler.step() #print("DEBUG data for hidden spliting") #print (f"Classification mask: Sum = {net.classmask.sum()}\t Uniques: {np.unique(net.classmask)}") #print (f"Regression mask: Sum = {net.regmask.sum()}\t Uniques: {np.unique(net.regmask)}") #print (f"overlap: {(net.regmask * net.classmask).sum()}") writer.close() vprint() if args.profile == 1: multiplexer = sc.create_multiplexer(tb_name) # sc.export_scalars(multiplexer, '.', "GPUmem", "testcsv.csv") data = sc.extract_scalars(multiplexer, '.', "GPUmem") vprint(f"Peak GPU memory used: {sc.return_max_val(data)}MB") vprint("Saving performance metrics (AUCs) and model.") ##### model saving ##### if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) model_file = f"{args.output_dir}/{name}.pt" out_file = f"{args.output_dir}/{name}.json" if args.save_model: torch.save(net.state_dict(), model_file) vprint(f"Saved model weights into '{model_file}'.") results_va["classification"]["num_pos"] = num_pos_va results_va["classification"]["num_neg"] = num_neg_va results_va["regression"]["num_samples"] = num_regr_va if results_tr is not None: results_tr["classification"]["num_pos"] = num_pos - num_pos_va results_tr["classification"]["num_neg"] = num_neg - num_neg_va results_tr["regression"]["num_samples"] = num_regr - num_regr_va stats = None if args.normalize_regression == 1: stats = {} stats["mean"] = mean_save stats["var"] = np.array(var_save)[0] sc.save_results(out_file, args, validation=results_va, training=results_tr, stats=stats) vprint( f"Saved config and results into '{out_file}'.\nYou can load the results by:\n import sparsechem as sc\n res = sc.load_results('{out_file}')" )
def predict(): parser = argparse.ArgumentParser(description="Using trained model to make predictions.") parser.add_argument("--x", help="Descriptor file (matrix market, .npy or .npz)", type=str, required=True) parser.add_argument("--y_class", "--y", "--y_classification", help="Sparse pattern file for classification, optional. If provided returns predictions for given locations only (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--y_regr", "--y_regression", help="Sparse pattern file for regression, optional. If provided returns predictions for given locations only (matrix market, .npy or .npz)", type=str, default=None) parser.add_argument("--folding", help="Folds for rows of y, optional. Needed if only one fold should be predicted.", type=str, required=False) parser.add_argument("--predict_fold", help="One or more folds, integer(s). Needed if --folding is provided.", nargs="+", type=int, required=False) parser.add_argument("--outprefix", help="Prefix for output files, '-class.npy', '-regr.npy' will be appended.", type=str, required=True) parser.add_argument("--conf", help="Model conf file (.json or .npy)", type=str, required=True) parser.add_argument("--model", help="Pytorch model file (.pt)", type=str, required=True) parser.add_argument("--batch_size", help="Batch size (default 4000)", type=int, default=4000) parser.add_argument("--last_hidden", help="If set to 1 returns last hidden layer instead of Yhat", type=int, default=0) parser.add_argument("--dropout", help="If set to 1 enables dropout for evaluation", type=int, default=0) parser.add_argument("--inverse_normalization", help="If set to 1 enables inverse normalization given means and variances from config file", type=int, default=0) parser.add_argument("--weights_class", "--task_weights", "--weights_classification", help="CSV file with columns task_id, training_weight, aggregation_weight, task_type (for classification tasks)", type=str, default=None) parser.add_argument("--dev", help="Device to use (default cuda:0)", type=str, default="cuda:0") parser.add_argument("--num_workers", help="Number of workers for DataLoader", type=int, default=4) args = parser.parse_args() print(args) results_loaded = sc.load_results(args.conf, two_heads=True) conf = results_loaded["conf"] if args.inverse_normalization == 1: stats = results_loaded["stats"] x = sc.load_sparse(args.x) x = sc.fold_transform_inputs(x, folding_size=conf.fold_inputs, transform=conf.input_transform) print(f"Input dimension: {x.shape[1]}") print(f"#samples: {x.shape[0]}") ## error checks for --y_class, --y_regr, --folding and --predict_fold if args.last_hidden: assert args.y_class is None, "Cannot use '--last_hidden 1' with sparse predictions ('--y_class' or '--y_regr' is specified)." if args.y_class is None and args.y_regr is None: assert args.predict_fold is None, "To use '--predict_fold' please specify '--y_class' and/or '--y_regr'." assert args.folding is None, "To use '--folding' please specify '--y_class' and/or '--y_regr'." else: if args.predict_fold is None: assert args.folding is None, "If --folding is given please also specify --predict_fold." if args.folding is None: assert args.predict_fold is None, "If --predict_fold is given please also specify --folding." res = types.SimpleNamespace(task_id=None, training_weight=None, aggregation_weight=None, task_type=None, censored_weight=torch.FloatTensor(), cat_id=None) if args.weights_class is not None: tasks_class = pd.read_csv(args.weights_class) if "catalog_id" in tasks_class: res.cat_id = tasks_class.catalog_id.values tasks_cat_id_list = None select_cat_ids = None if res.cat_id is not None: tasks_cat_id_list = [[x,i] for i,x in enumerate(res.cat_id) if str(x) != 'nan'] tasks_cat_ids = [i for i,x in enumerate(res.cat_id) if str(x) != 'nan'] select_cat_ids = np.array(tasks_cat_ids) cat_id_size = len(tasks_cat_id_list) else: cat_id_size = 0 dev = args.dev net = sc.SparseFFN(conf).to(dev) state_dict = torch.load(args.model, map_location=torch.device(dev)) if conf.model_type == "federated": state_dict_new = OrderedDict() state_dict_new["net.0.net_freq.weight"] = state_dict["0.0.net_freq.weight"] state_dict_new["net.0.net_freq.bias"] = state_dict["0.0.net_freq.bias"] state_dict_new["net.2.net.2.weight"] = state_dict["1.net.2.weight"] state_dict_new["net.2.net.2.bias"] = state_dict["1.net.2.bias"] state_dict = state_dict_new net.load_state_dict(state_dict) print(f"Model weights: '{args.model}'") print(f"Model config: '{args.conf}'.") y_class = sc.load_check_sparse(args.y_class, (x.shape[0], conf.class_output_size)) y_regr = sc.load_check_sparse(args.y_regr, (x.shape[0], conf.regr_output_size)) if args.folding is not None: folding = np.load(args.folding) if args.folding else None assert folding.shape[0] == x.shape[0], f"Folding has {folding.shape[0]} rows and X has {x.shape[0]}. Must be equal." keep = np.isin(folding, args.predict_fold) y_class = sc.keep_row_data(y_class, keep) y_regr = sc.keep_row_data(y_regr, keep) dataset_te = sc.ClassRegrSparseDataset(x=x, y_class=y_class, y_regr=y_regr) loader_te = DataLoader(dataset_te, batch_size=args.batch_size, num_workers = args.num_workers, pin_memory=True, collate_fn=dataset_te.collate) if args.last_hidden: ## saving only hidden layer out = sc.predict_hidden(net, loader_te, dev=dev, dropout=args.dropout, progress=True) filename = f"{args.outprefix}-hidden.npy" np.save(filename, out.numpy()) print(f"Saved (numpy) matrix of hiddens to '{filename}'.") else: if args.y_class is None and args.y_regr is None: class_out, regr_out = sc.predict_dense(net, loader_te, dev=dev, dropout=args.dropout, progress=True, y_cat_columns=select_cat_ids) else: class_out, regr_out = sc.predict_sparse(net, loader_te, dev=dev, dropout=args.dropout, progress=True, y_cat_columns=select_cat_ids) if args.inverse_normalization == 1: regr_out = sc.inverse_normalization(regr_out, mean=np.array(stats["mean"]), variance=np.array(stats["var"]), array=True) if net.class_output_size > 0: np.save(f"{args.outprefix}-class.npy", class_out) print(f"Saved prediction matrix (numpy) for classification to '{args.outprefix}-class.npy'.") if net.regr_output_size > 0: np.save(f"{args.outprefix}-regr.npy", regr_out) print(f"Saved prediction matrix (numpy) for regression to '{args.outprefix}-regr.npy'.")
net.load_state_dict(state_dict) print(f"Model weights: '{args.model}'") print(f"Model config: '{args.conf}'.") print(f"FedModel config: '{args.fedconf}'.") y_class = sc.load_check_sparse(args.y_class, (x.shape[0], conf.class_output_size)) y_regr = sc.load_check_sparse(args.y_regr, (x.shape[0], conf.regr_output_size)) if args.folding is not None: folding = np.load(args.folding) if args.folding else None assert folding.shape[0] == x.shape[0], f"Folding has {folding.shape[0]} rows and X has {x.shape[0]}. Must be equal." keep = np.isin(folding, args.predict_fold) y_class = sc.keep_row_data(y_class, keep) y_regr = sc.keep_row_data(y_regr, keep) dataset_te = sc.ClassRegrSparseDataset(x=x, y_class=y_class, y_regr=y_regr) loader_te = DataLoader(dataset_te, batch_size=args.batch_size, num_workers = 4, pin_memory=True, collate_fn=dataset_te.collate) if args.last_hidden: ## saving only hidden layer out = sc.predict_hidden(net, loader_te, dev=dev, dropout=args.dropout, progress=True) filename = f"{args.outprefix}-hidden.npy" np.save(filename, out.numpy()) print(f"Saved (numpy) matrix of hiddens to '{filename}'.") else: if args.y_class is None and args.y_regr is None: class_out, regr_out = sc.predict_dense(net, loader_te, dev=dev, dropout=args.dropout, progress=True) else: class_out, regr_out = sc.predict_sparse(net, loader_te, dev=dev, dropout=args.dropout, progress=True) if net.class_output_size > 0: