Example #1
0
def val(spatial_size, Scale, precomputeStride):
    d = pickle.load(open('pickle/test.pickle', 'rb'))
    d = torchnet.dataset.ListDataset(d)
    randperm = torch.randperm(len(d))

    def perm(idx, size):
        return randperm[idx]

    def merge(tbl):
        inp = scn.InputBatch(2, spatial_size)
        center = spatial_size.float().view(1, 2) / 2
        p = torch.LongTensor(2)
        v = torch.FloatTensor([1, 0, 0])
        for char in tbl['input']:
            inp.addSample()
            for stroke in char:
                stroke = stroke.float() * (Scale - 0.01) / 255 - 0.5 * (Scale - 0.01)
                stroke += center.expand_as(stroke)
                scn.dim_fn(
                    2,
                    'drawCurve')(
                    inp.metadata.ffi,
                    inp.features,
                    stroke)
        inp.precomputeMetadata(precomputeStride)
        return {'input': inp, 'target': torch.LongTensor(tbl['target']) - 1}
    bd = torchnet.dataset.BatchDataset(d, 183, perm=perm, merge=merge)
    tdi = scn.threadDatasetIterator(bd)

    def iter():
        randperm.copy_(torch.randperm(len(d)))
        return tdi()
    return iter
Example #2
0
def val(spatial_size, Scale, precomputeStride):
    d = pickle.load(open('pickle/test.pickle', 'rb'))
    d = torchnet.dataset.ListDataset(d)
    randperm = torch.randperm(len(d))

    def perm(idx, size):
        return randperm[idx]

    def merge(tbl):
        inp = scn.InputBatch(2, spatial_size)
        center = spatial_size.float().view(1, 2) / 2
        p = torch.LongTensor(2)
        v = torch.FloatTensor([1, 0, 0])
        for char in tbl['input']:
            inp.addSample()
            for stroke in char:
                stroke = stroke.float() * (Scale - 0.01) / 255 - 0.5 * (Scale - 0.01)
                stroke += center.expand_as(stroke)
                scn.dim_fn(
                    2,
                    'drawCurve')(
                    inp.metadata.ffi,
                    inp.features,
                    stroke)
        inp.precomputeMetadata(precomputeStride)
        return {'input': inp, 'target': torch.LongTensor(tbl['target']) - 1}
    bd = torchnet.dataset.BatchDataset(d, 183, perm=perm, merge=merge)
    tdi = scn.threadDatasetIterator(bd)

    def iter():
        randperm = torch.randperm(len(d))
        return tdi()
    return iter
Example #3
0
def train(spatial_size, Scale, precomputeSize):
    d = pickle.load(open('pickle/train.pickle', 'rb'))
    d = torchnet.dataset.ListDataset(d)
    randperm = torch.randperm(len(d))

    def perm(idx, size):
        return randperm[idx]

    def merge(tbl):
        inp = scn.InputBatch(2, spatial_size)
        center = spatial_size.float().view(1, 2) / 2
        p = torch.LongTensor(2)
        v = torch.FloatTensor([1, 0, 0])
        for char in tbl['input']:
            inp.add_sample()
            for stroke in char:
                stroke = stroke.float() * (Scale - 0.01) / 255 - 0.5 * (Scale - 0.01)
                stroke += center.expand_as(stroke)
                ###############################################################
                # To avoid GIL problems use a helper function:
                scn.dim_fn(
                    2,
                    'drawCurve')(
                    inp.metadata.ffi,
                    inp.features,
                    stroke)
                ###############################################################
                # Above is equivalent to :
                # x1,x2,y1,y2,l=0,stroke[0][0],0,stroke[0][1],0
                # for i in range(1,stroke.size(0)):
                #     x1=x2
                #     y1=y2
                #     x2=stroke[i][0]
                #     y2=stroke[i][1]
                #     l=1e-10+((x2-x1)**2+(y2-y1)**2)**0.5
                #     v[1]=(x2-x1)/l
                #     v[2]=(y2-y1)/l
                #     l=max(x2-x1,y2-y1,x1-x2,y1-y2,0.9)
                #     for j in numpy.arange(0,1,1/l):
                #         p[0]=math.floor(x1*j+x2*(1-j))
                #         p[1]=math.floor(y1*j+y2*(1-j))
                #         inp.set_location(p,v,False)
                ###############################################################
        inp.precomputeMetadata(precomputeSize)
        return {'input': inp, 'target': torch.LongTensor(tbl['target'])}
    bd = torchnet.dataset.BatchDataset(d, 100, perm=perm, merge=merge)
    tdi = scn.threadDatasetIterator(bd)

    def iter():
        randperm.copy_(torch.randperm(len(d)))
        return tdi()
    return iter
Example #4
0
def train(spatial_size, Scale, precomputeStride):
    d = pickle.load(open('pickle/train.pickle', 'rb'))
    print('Replicating training set 10 times (1 epoch = 10 iterations through the training set = 10x6588 training samples)')
    for i in range(9):
        for j in range(6588):
            d.append(d[j])
    d = torchnet.dataset.ListDataset(d)
    randperm = torch.randperm(len(d))

    def perm(idx, size):
        return randperm[idx]

    def merge(tbl):
        inp = scn.InputBatch(2, spatial_size)
        center = spatial_size.float().view(1, 2) / 2
        p = torch.LongTensor(2)
        v = torch.FloatTensor([1, 0, 0])
        for char in tbl['input']:
            inp.addSample()
            m = torch.eye(2)
            r = random.randint(1, 3)
            alpha = random.uniform(-0.2, 0.2)
            if alpha == 1:
                m[0][1] = alpha
            elif alpha == 2:
                m[1][0] = alpha
            else:
                m = torch.mm(m, torch.FloatTensor(
                    [[math.cos(alpha), math.sin(alpha)],
                     [-math.sin(alpha), math.cos(alpha)]]))
            c = center + torch.FloatTensor(1, 2).uniform_(-8, 8)
            for stroke in char:
                stroke = stroke.float() / 255 - 0.5
                stroke = c.expand_as(stroke) + \
                    torch.mm(stroke, m * (Scale - 0.01))
                ###############################################################
                # To avoid GIL problems use a helper function:
                scn.dim_fn(
                    2,
                    'drawCurve')(
                    inp.metadata.ffi,
                    inp.features,
                    stroke)
                ###############################################################
                # Above is equivalent to :
                # x1,x2,y1,y2,l=0,stroke[0][0],0,stroke[0][1],0
                # for i in range(1,stroke.size(0)):
                #     x1=x2
                #     y1=y2
                #     x2=stroke[i][0]
                #     y2=stroke[i][1]
                #     l=1e-10+((x2-x1)**2+(y2-y1)**2)**0.5
                #     v[1]=(x2-x1)/l
                #     v[2]=(y2-y1)/l
                #     l=max(x2-x1,y2-y1,x1-x2,y1-y2,0.9)
                #     for j in numpy.arange(0,1,1/l):
                #         p[0]=math.floor(x1*j+x2*(1-j))
                #         p[1]=math.floor(y1*j+y2*(1-j))
                #         inp.setLocation(p,v,False)
                ###############################################################
        inp.precomputeMetadata(precomputeStride)
        return {'input': inp, 'target': torch.LongTensor(tbl['target']) - 1}
    bd = torchnet.dataset.BatchDataset(d, 108, perm=perm, merge=merge)
    tdi = scn.threadDatasetIterator(bd)

    def iter():
        randperm.copy_(torch.randperm(len(d)))
        return tdi()
    return iter
Example #5
0
def train(spatial_size, Scale, precomputeStride):
    d = pickle.load(open('pickle/train.pickle', 'rb'))
    print('Replicating training set 10 times (1 epoch = 10 iterations through the training set = 10x6588 training samples)')
    for i in range(9):
        for j in range(6588):
            d.append(d[j])
    d = torchnet.dataset.ListDataset(d)
    randperm = torch.randperm(len(d))

    def perm(idx, size):
        return randperm[idx]

    def merge(tbl):
        inp = scn.InputBatch(2, spatial_size)
        center = spatial_size.float().view(1, 2) / 2
        p = torch.LongTensor(2)
        v = torch.FloatTensor([1, 0, 0])
        for char in tbl['input']:
            inp.addSample()
            m = torch.eye(2)
            r = random.randint(1, 3)
            alpha = random.uniform(-0.2, 0.2)
            if alpha == 1:
                m[0][1] = alpha
            elif alpha == 2:
                m[1][0] = alpha
            else:
                m = torch.mm(m, torch.FloatTensor(
                    [[math.cos(alpha), math.sin(alpha)],
                     [-math.sin(alpha), math.cos(alpha)]]))
            c = center + torch.FloatTensor(1, 2).uniform_(-8, 8)
            for stroke in char:
                stroke = stroke.float() / 255 - 0.5
                stroke = c.expand_as(stroke) + \
                    torch.mm(stroke, m * (Scale - 0.01))
                ###############################################################
                # To avoid GIL problems use a helper function:
                scn.dim_fn(
                    2,
                    'drawCurve')(
                    inp.metadata.ffi,
                    inp.features,
                    stroke)
                ###############################################################
                # Above is equivalent to :
                # x1,x2,y1,y2,l=0,stroke[0][0],0,stroke[0][1],0
                # for i in range(1,stroke.size(0)):
                #     x1=x2
                #     y1=y2
                #     x2=stroke[i][0]
                #     y2=stroke[i][1]
                #     l=1e-10+((x2-x1)**2+(y2-y1)**2)**0.5
                #     v[1]=(x2-x1)/l
                #     v[2]=(y2-y1)/l
                #     l=max(x2-x1,y2-y1,x1-x2,y1-y2,0.9)
                #     for j in numpy.arange(0,1,1/l):
                #         p[0]=math.floor(x1*j+x2*(1-j))
                #         p[1]=math.floor(y1*j+y2*(1-j))
                #         inp.setLocation(p,v,False)
                ###############################################################
        inp.precomputeMetadata(precomputeStride)
        return {'input': inp, 'target': torch.LongTensor(tbl['target']) - 1}
    bd = torchnet.dataset.BatchDataset(d, 108, perm=perm, merge=merge)
    tdi = scn.threadDatasetIterator(bd)

    def iter():
        randperm = torch.randperm(len(d))
        return tdi()
    return iter
Example #6
0
def train(DATASET, used_train_num):
    spatialSize = DATASET['spatialSize']
    output_spatialSize = DATASET['output_spatialSize']
    dataset_outputSize = DATASET['dataset_outputSize']
    dataset_outputSize2 = DATASET['dataset_outputSize2']

    train_data_path = DATASET['train_data_path']
    train_data_num = DATASET['train_data_num']
    train_weight_path = DATASET['train_weight_path']
    input_offset = DATASET['input_offset']
    output_offset = DATASET['output_offset']
    train_batch_size = DATASET['train_batch_size']

    easy_ratio = DATASET['easy_ratio']
    neg_ratio = DATASET['neg_ratio']
    d = range(train_data_num)

    def loadData(idx):
        data = msgpack.load(open(train_data_path + str(idx) + '.msg', 'rb'))
        while np.asarray(data[b'input_nz']).size == 0:  # check
            print('discard data:' + train_data_path + str(idx) + '.msg')
            idx = np.random.randint(train_data_num)
            data = msgpack.load(open(train_data_path + str(idx) + '.msg',
                                     'rb'))
        data[b'weight'] = msgpack.load(
            open(train_weight_path + str(idx) + '_weight.msg', 'rb'))
        return data

    d = torchnet.dataset.ListDataset(d, load=loadData)
    randperm = torch.randperm(len(d))

    def sampler(dataset, idx):
        return randperm[idx]

    d = torchnet.dataset.ResampleDataset(d,
                                         sampler=sampler,
                                         size=used_train_num *
                                         train_batch_size)

    def perm(idx, size):
        return idx

    def merge(tbl):
        merge_time = time.time()
        input = scn.InputBatch(3, spatialSize)
        target = []
        target2 = []
        batch_weight = []
        batch_weight2 = []
        count = 0
        locations = np.empty((0, 3)).astype(int)
        vals = []
        nz_nums = torch.LongTensor(train_batch_size)

        for input_nz, input_val, target_nz, target_val, weight_info in zip(
                tbl[b'input_nz'], tbl[b'input_val'], tbl[b'target_nz'],
                tbl[b'target_val'], tbl[b'weight']):
            locations = np.vstack((locations, input_nz))
            vals = np.concatenate([vals, input_val])
            nz_nums[count] = len(input_nz)
            label = np.zeros(dataset_outputSize.tolist()).astype(np.float32)
            label[target_nz.astype(int).tolist()] = target_val
            target.append(label)
            # compute downscale label
            label2 = SUNCGData.downsampleLabel2(label, 2).reshape(
                dataset_outputSize2.tolist())
            target2.append(label2)
            # compute weight
            weight = np.zeros(dataset_outputSize.tolist())
            weight[weight_info[b'hard_pos'].astype(int).tolist()] = 1
            hard_pos_num = weight_info[b'hard_pos'].shape[1]
            easy_pos_num = min(int(hard_pos_num * easy_ratio),
                               weight_info[b'easy_pos'].shape[1])
            if easy_pos_num > 0:
                easy_pos_idx = np.random.permutation(
                    weight_info[b'easy_pos'].shape[1])[:easy_pos_num]
                weight[weight_info[b'easy_pos'][:, easy_pos_idx].astype(
                    int).tolist()] = 1
            neg_num = int(
                min((hard_pos_num + easy_pos_num) * neg_ratio,
                    weight_info[b'hard_neg'].shape[1] / (1 - easy_ratio)))
            hard_neg_num = int(
                min(neg_num * (1 - easy_ratio),
                    weight_info[b'hard_neg'].shape[1]))
            if hard_neg_num > 0:
                hard_neg_idx = np.random.permutation(
                    weight_info[b'hard_neg'].shape[1])[:hard_neg_num]
                weight[weight_info[b'hard_neg'][:, hard_neg_idx].astype(
                    int).tolist()] = 1
            easy_neg_num = neg_num - hard_neg_num
            if easy_neg_num > 0:
                easy_neg_idx = np.random.permutation(
                    weight_info[b'easy_neg'].shape[1])[:easy_neg_num]
                weight[weight_info[b'easy_neg'][:, easy_neg_idx].astype(
                    int).tolist()] = 1
            batch_weight.append(weight)

            weight2 = weight.reshape([
                dataset_outputSize2[0], 2, dataset_outputSize2[1], 2,
                dataset_outputSize2[2], 2
            ]).mean(5).mean(3).mean(1)
            weight2[weight2 > 0] = 1
            batch_weight2.append(weight2)
            count = count + 1

        #put data at the center of the volume
        input.setInputBatchLocations(torch.from_numpy(locations).long()+input_offset.view(1,3), \
            torch.FloatTensor(vals).view(nz_nums.sum(),1), nz_nums)

        precomputeStride = 2
        input.precomputeMetadata(precomputeStride)
        return {'input': input, 'target': torch.LongTensor(np.array(target).astype(int)), 'weight':torch.FloatTensor(np.array(batch_weight)), \
                                'target2': torch.LongTensor(np.array(target2).astype(int)), 'weight2':torch.FloatTensor(np.array(batch_weight2)) }

    bd = torchnet.dataset.BatchDataset(d,
                                       train_batch_size,
                                       perm=perm,
                                       merge=merge)
    tdi = scn.threadDatasetIterator(bd)

    def iter():
        return tdi()

    return iter