Example #1
0
def annotate(
        lang: Language = Language(),
        model: Model = Model("[treetagger.model]"),
        tt_binary: Binary = Binary("[treetagger.binary]"),
        out_upos: Output = Output("<token>:treetagger.upos",
                                  cls="token:upos",
                                  description="Part-of-speeches in UD"),
        out_pos: Output = Output(
            "<token>:treetagger.pos",
            cls="token:pos",
            description="Part-of-speeches from TreeTagger"),
        out_baseform: Output = Output("<token>:treetagger.baseform",
                                      description="Baseforms from TreeTagger"),
        word: Annotation = Annotation("<token:word>"),
        sentence: Annotation = Annotation("<sentence>"),
        encoding: str = util.UTF8):
    """POS/MSD tag and lemmatize using TreeTagger."""
    sentences, _orphans = sentence.get_children(word)
    word_annotation = list(word.read())
    stdin = SENT_SEP.join(
        TOK_SEP.join(word_annotation[token_index] for token_index in sent)
        for sent in sentences)
    args = ["-token", "-lemma", "-no-unknown", "-eos-tag", "<eos>", model.path]

    stdout, stderr = util.system.call_binary(tt_binary,
                                             args,
                                             stdin,
                                             encoding=encoding)
    log.debug("Message from TreeTagger:\n%s", stderr)

    # Write pos and upos annotations.
    out_upos_annotation = word.create_empty_attribute()
    out_pos_annotation = word.create_empty_attribute()
    for sent, tagged_sent in zip(sentences, stdout.strip().split(SENT_SEP)):
        for token_id, tagged_token in zip(sent,
                                          tagged_sent.strip().split(TOK_SEP)):
            tag = tagged_token.strip().split(TAG_SEP)[TAG_COLUMN]
            out_pos_annotation[token_id] = tag
            out_upos_annotation[token_id] = util.tagsets.pos_to_upos(
                tag, lang, TAG_SETS.get(lang))
    out_pos.write(out_pos_annotation)
    out_upos.write(out_upos_annotation)

    # Write lemma annotations.
    out_lemma_annotation = word.create_empty_attribute()
    for sent, tagged_sent in zip(sentences, stdout.strip().split(SENT_SEP)):
        for token_id, tagged_token in zip(sent,
                                          tagged_sent.strip().split(TOK_SEP)):
            lem = tagged_token.strip().split(TAG_SEP)[LEM_COLUMN]
            out_lemma_annotation[token_id] = lem
    out_baseform.write(out_lemma_annotation)
Example #2
0
def msdtag(out: Output = Output(
    "<token>:hunpos.msd",
    cls="token:msd",
    description="Part-of-speeches with morphological descriptions"),
           word: Annotation = Annotation("<token:word>"),
           sentence: Annotation = Annotation("<sentence>"),
           binary: Binary = Binary("[hunpos.binary]"),
           model: Model = Model("[hunpos.model]"),
           morphtable: Optional[Model] = Model("[hunpos.morphtable]"),
           patterns: Optional[Model] = Model("[hunpos.patterns]"),
           tag_mapping=None,
           encoding: str = util.UTF8):
    """POS/MSD tag using the Hunpos tagger."""
    if isinstance(tag_mapping, str) and tag_mapping:
        tag_mapping = util.tagsets.mappings[tag_mapping]
    elif tag_mapping is None or tag_mapping == "":
        tag_mapping = {}

    pattern_list = []

    if patterns:
        with open(patterns.path, encoding="utf-8") as pat:
            for line in pat:
                if line.strip() and not line.startswith("#"):
                    name, pattern, tags = line.strip().split("\t", 2)
                    pattern_list.append(
                        (name, re.compile("^%s$" % pattern), tags))

    def replace_word(w):
        """Replace word with alias if word matches a regex pattern."""
        for p in pattern_list:
            if re.match(p[1], w):
                return "[[%s]]" % p[0]
        return w

    sentences, _orphans = sentence.get_children(word)
    token_word = list(word.read())
    stdin = SENT_SEP.join(
        TOK_SEP.join(
            replace_word(token_word[token_index]) for token_index in sent)
        for sent in sentences)
    args = [model.path]
    if morphtable:
        args.extend(["-m", morphtable.path])
    stdout, _ = util.system.call_binary(binary, args, stdin, encoding=encoding)

    out_annotation = word.create_empty_attribute()
    for sent, tagged_sent in zip(sentences, stdout.strip().split(SENT_SEP)):
        for token_index, tagged_token in zip(
                sent,
                tagged_sent.strip().split(TOK_SEP)):
            tag = tagged_token.strip().split(TAG_SEP)[TAG_COLUMN]
            tag = tag_mapping.get(tag, tag)
            out_annotation[token_index] = tag

    out.write(out_annotation)
Example #3
0
def contextual(out: Output = Output("{chunk}:geo.geo_context", description="Geographical places with coordinates"),
               chunk: Annotation = Annotation("{chunk}"),
               context: Annotation = Annotation("[geo.context_chunk]"),
               ne_type: Annotation = Annotation("swener.ne:swener.type"),
               ne_subtype: Annotation = Annotation("swener.ne:swener.subtype"),
               ne_name: Annotation = Annotation("swener.ne:swener.name"),
               model: Model = Model("[geo.model]"),
               method: str = "populous",
               language: list = []):
    """Annotate chunks with location data, based on locations contained within the text.

    context = text chunk to use for disambiguating places (when applicable).
    chunk = text chunk to which the annotation will be added.
    """
    model = load_model(model, language=language)

    ne_type_annotation = list(ne_type.read())
    ne_subtype_annotation = list(ne_subtype.read())
    ne_name_annotation = list(ne_name.read())

    children_context_chunk, _orphans = context.get_children(chunk)
    children_chunk_ne, _orphans = chunk.get_children(ne_type)

    out_annotation = chunk.create_empty_attribute()

    for chunks in children_context_chunk:
        all_locations = []  # TODO: Maybe not needed for anything?
        context_locations = []
        chunk_locations = defaultdict(list)

        for ch in chunks:
            for n in children_chunk_ne[ch]:
                if ne_type_annotation[n] == "LOC" and "PPL" in ne_subtype_annotation[n]:
                    location_text = ne_name_annotation[n].replace("\n", " ").replace("  ", " ")
                    location_data = model.get(location_text.lower())
                    if location_data:
                        all_locations.append((location_text, list(location_data)))
                        context_locations.append((location_text, list(location_data)))
                        chunk_locations[ch].append((location_text, list(location_data)))
                    else:
                        pass
                        # log.info("No location found for %s" % ne_name_annotation[n].replace("%", "%%"))

        chunk_locations = most_populous(chunk_locations)

        for c in chunks:
            out_annotation[c] = _format_location(chunk_locations.get(c, ()))

    out.write(out_annotation)
Example #4
0
def process_output(word: Annotation, out: Output, stdout, in_sentences,
                   saldo_annotation, prob_format, default_prob):
    """Parse WSD output and write annotation."""
    out_annotation = word.create_empty_attribute()

    # Split output into sentences
    out_sentences = stdout.strip()
    out_sentences = out_sentences.split("\t".join(
        ["_", "_", "_", "_", SENT_SEP, "_", "_"]))
    out_sentences = [i for i in out_sentences if i]

    # Split output into tokens
    for out_sent, in_sent in zip(out_sentences, in_sentences):
        out_tokens = [t for t in out_sent.split("\n") if t]
        for (out_tok, in_tok) in zip(out_tokens, in_sent):
            out_prob = out_tok.split("\t")[6]
            out_prob = [i for i in out_prob.split("|") if i != "_"]
            out_meanings = [
                i for i in out_tok.split("\t")[5].split("|") if i != "_"
            ]
            saldo = [
                i for i in saldo_annotation[in_tok].strip(util.AFFIX).split(
                    util.DELIM) if i
            ]

            new_saldo = []
            if out_prob:
                for meaning in saldo:
                    if meaning in out_meanings:
                        i = out_meanings.index(meaning)
                        new_saldo.append((meaning, float(out_prob[i])))
                    else:
                        new_saldo.append((meaning, default_prob))
            else:
                new_saldo = [(meaning, default_prob) for meaning in saldo]

            # Sort by probability
            new_saldo.sort(key=lambda x: (-x[1], x[0]))
            # Format probability according to prob_format
            new_saldo = [
                saldo + prob_format % prob if prob_format else saldo
                for saldo, prob in new_saldo
            ]
            out_annotation[in_tok] = util.cwbset(new_saldo)

    out.write(out_annotation)
Example #5
0
def metadata(out: Output = Output("{chunk}:geo.geo_metadata", description="Geographical places with coordinates"),
             chunk: Annotation = Annotation("{chunk}"),
             source: Annotation = Annotation("[geo.metadata_source]"),
             model: Model = Model("[geo.model]"),
             method: str = "populous",
             language: list = []):
    """Get location data based on metadata containing location names."""
    geomodel = load_model(model, language=language)

    same_target_source = chunk.split()[0] == source.split()[0]
    chunk_annotation = list(chunk.read())
    source_annotation = list(source.read())

    # If location source and target chunk are not the same, we need
    # to find the parent/child relations between them.
    if not same_target_source:
        target_source_parents = list(source.get_parents(chunk))

    chunk_locations = {}

    for i, _ in enumerate(chunk_annotation):
        if same_target_source:
            location_source = source_annotation[i]
        else:
            location_source = source_annotation[target_source_parents[i]] if target_source_parents[
                i] is not None else None

        if location_source:
            location_data = geomodel.get(location_source.strip().lower())
            if location_data:
                chunk_locations[i] = [(location_source, list(location_data))]
        else:
            chunk_locations[i] = []

    chunk_locations = most_populous(chunk_locations)

    out_annotation = chunk.create_empty_attribute()
    for c in chunk_locations:
        out_annotation[c] = _format_location(chunk_locations.get(c, ()))

    out.write(out_annotation)
Example #6
0
def _read_chunks_and_write_new_ordering(out: Output, chunk: Annotation, order, prefix="", zfill=False,
                                        start=START_DEFAULT):
    """Common function called by other numbering functions."""
    new_order = defaultdict(list)

    in_annotation = list(chunk.read())

    for i, val in enumerate(in_annotation):
        val = order(i, val)
        new_order[val].append(i)

    out_annotation = chunk.create_empty_attribute()

    nr_digits = len(str(len(new_order) - 1 + start))
    for nr, key in enumerate(sorted(new_order), start):
        for index in new_order[key]:
            out_annotation[index] = "{prefix}{nr:0{length}d}".format(prefix=prefix,
                                                                     length=nr_digits if zfill else 0,
                                                                     nr=nr)

    out.write(out_annotation)
Example #7
0
def text_headtail(text: Text = Text(),
                  chunk: Annotation = Annotation("<token>"),
                  out_head: Output = Output("<token>:misc.head"),
                  out_tail: Output = Output("<token>:misc.tail")):
    """Extract "head" and "tail" whitespace characters for tokens."""
    def escape(t):
        """Escape whitespace characters."""
        return t.replace(" ", "\\s").replace("\n", "\\n").replace("\t", "\\t")

    out_head_annotation = chunk.create_empty_attribute()
    out_tail_annotation = chunk.create_empty_attribute()
    head_text = None

    corpus_text = text.read()
    chunk = list(chunk.read())

    for i, span in enumerate(chunk):
        if head_text:
            out_head_annotation[i] = escape(head_text)
            head_text = None

        if i < len(chunk) - 1:
            tail_start = span[1][0]
            tail_end = chunk[i + 1][0][0]
            tail_text = corpus_text[tail_start:tail_end]

            try:
                n_pos = tail_text.rindex("\n")
            except ValueError:
                n_pos = None
            if n_pos is not None and n_pos + 1 < len(tail_text):
                head_text = tail_text[n_pos + 1:]
                tail_text = tail_text[:n_pos + 1]

            if tail_text:
                out_tail_annotation[i] = escape(tail_text)

    out_head.write(out_head_annotation)
    out_tail.write(out_tail_annotation)
Example #8
0
def annotate(
        maltjar: Binary = Binary("[malt.jar]"),
        model: Model = Model("[malt.model]"),
        out_dephead: Output = Output(
            "<token>:malt.dephead",
            cls="token:dephead",
            description="Positions of the dependency heads"),
        out_dephead_ref: Output = Output(
            "<token>:malt.dephead_ref",
            cls="token:dephead_ref",
            description="Sentence-relative positions of the dependency heads"),
        out_deprel: Output = Output(
            "<token>:malt.deprel",
            cls="token:deprel",
            description="Dependency relations to the head"),
        word: Annotation = Annotation("<token:word>"),
        pos: Annotation = Annotation("<token:pos>"),
        msd: Annotation = Annotation("<token:msd>"),
        ref: Annotation = Annotation("<token>:misc.number_rel_<sentence>"),
        sentence: Annotation = Annotation("<sentence>"),
        token: Annotation = Annotation("<token>"),
        encoding: str = util.UTF8,
        process_dict=None):
    """
    Run the malt parser, in an already started process defined in process_dict, or start a new process (default).

    The process_dict argument should never be set from the command line.
    """
    if process_dict is None:
        process = maltstart(maltjar, model, encoding)
    else:
        process = process_dict["process"]
        # If process seems dead, spawn a new
        if process.stdin.closed or process.stdout.closed or process.poll():
            util.system.kill_process(process)
            process = maltstart(maltjar,
                                model,
                                encoding,
                                send_empty_sentence=True)
            process_dict["process"] = process

    sentences, orphans = sentence.get_children(token)
    sentences.append(orphans)

    word_annotation = list(word.read())
    pos_annotation = list(pos.read())
    msd_annotation = list(msd.read())
    ref_annotation = list(ref.read())

    def conll_token(nr, token_index):
        form = word_annotation[token_index]
        lemma = UNDEF
        pos = cpos = pos_annotation[token_index]
        feats = re.sub(r"[ ,.]", "|",
                       msd_annotation[token_index]).replace("+", "/")
        return TAG_SEP.join((str(nr), form, lemma, cpos, pos, feats))

    stdin = SENT_SEP.join(
        TOK_SEP.join(
            conll_token(n + 1, token_index)
            for n, token_index in enumerate(sent)) for sent in sentences)

    if encoding:
        stdin = stdin.encode(encoding)

    keep_process = len(
        stdin) < RESTART_THRESHOLD_LENGTH and process_dict is not None
    log.info("Stdin length: %s, keep process: %s", len(stdin), keep_process)

    if process_dict is not None:
        process_dict["restart"] = not keep_process

    if keep_process:
        # Chatting with malt: send a SENT_SEP and read correct number of lines
        stdin_fd, stdout_fd = process.stdin, process.stdout
        stdin_fd.write(stdin + SENT_SEP.encode(util.UTF8))
        stdin_fd.flush()

        malt_sentences = []
        for sent in sentences:
            malt_sent = []
            for _ in sent:
                line = stdout_fd.readline()
                if encoding:
                    line = line.decode(encoding)
                malt_sent.append(line)
            line = stdout_fd.readline()
            assert line == b"\n"
            malt_sentences.append(malt_sent)
    else:
        # Otherwise use communicate which buffers properly
        stdout, _ = process.communicate(stdin)
        if encoding:
            stdout = stdout.decode(encoding)
        malt_sentences = (malt_sent.split(TOK_SEP)
                          for malt_sent in stdout.split(SENT_SEP))

    out_dephead_annotation = word.create_empty_attribute()
    out_dephead_ref_annotation = out_dephead_annotation.copy()
    out_deprel_annotation = out_dephead_annotation.copy()
    for (sent, malt_sent) in zip(sentences, malt_sentences):
        for (token_index, malt_tok) in zip(sent, malt_sent):
            cols = [(None if col == UNDEF else col)
                    for col in malt_tok.split(TAG_SEP)]
            out_deprel_annotation[token_index] = cols[DEPREL_COLUMN]
            head = int(cols[HEAD_COLUMN])
            out_dephead_annotation[token_index] = str(sent[head -
                                                           1]) if head else "-"
            out_dephead_ref_annotation[token_index] = str(
                ref_annotation[sent[head - 1]]) if head else ""

    out_dephead.write(out_dephead_annotation)
    out_dephead_ref.write(out_dephead_ref_annotation)
    out_deprel.write(out_deprel_annotation)
Example #9
0
def annotate_words(out: Output, model: Model, saldoids: Annotation, pos: Annotation, annotate, pos_limit: List[str],
                   class_set=None, disambiguate=True, connect_ids=False, delimiter=util.DELIM, affix=util.AFFIX,
                   scoresep=util.SCORESEP, lexicon=None):
    """
    Annotate words with blingbring classes (rogetID).

    - out_sent: resulting annotation file.
    - model: pickled lexicon with saldoIDs as keys.
    - saldoids, pos: existing annotation with saldoIDs/parts of speech.
    - annotate: annotation function, returns an iterable containing annotations
        for one token ID. (annotate_bring() or annotate_swefn())
    - pos_limit: parts of speech that will be annotated.
        Set to None to annotate all pos.
    - class_set: output Bring classes or Roget IDs ("bring", "roget_head",
        "roget_subsection", "roget_section" or "roget_class").
        Set to None when not annotating blingbring.
    - disambiguate: use WSD and use only the most likely saldo ID.
    - connect_IDs: for sweFN: paste saldo ID after each sweFN ID.
    - delimiter: delimiter character to put between ambiguous results
    - affix: optional character to put before and after results to mark a set.
    - lexicon: this argument cannot be set from the command line,
      but is used in the catapult. This argument must be last.
    """
    if not lexicon:
        lexicon = util.PickledLexicon(model.path)
    # Otherwise use pre-loaded lexicon (from catapult)

    sense = saldoids.read()
    token_pos = list(pos.read())
    out_annotation = pos.create_empty_attribute()

    # Check if the saldo IDs are ranked (= word senses have been disambiguated)
    wsd = saldoids.split()[1].split(".")[0] == "wsd"

    for token_index, token_sense in enumerate(sense):

        # Check if part of speech of this token is allowed
        if not pos_ok(token_pos, token_index, pos_limit):
            saldo_ids = None
            out_annotation[token_index] = affix
            continue

        if wsd and util.SCORESEP in token_sense:
            ranked_saldo = token_sense.strip(util.AFFIX).split(util.DELIM) \
                if token_sense != util.AFFIX else None
            saldo_tuples = [(i.split(util.SCORESEP)[0], i.split(util.SCORESEP)[1]) for i in ranked_saldo]

            if not disambiguate:
                saldo_ids = [i[0] for i in saldo_tuples]

            # Only take the most likely analysis into account.
            # Handle wsd with equal probability for several words
            else:
                saldo_ids = [saldo_tuples[0]]
                del saldo_tuples[0]
                while saldo_tuples and (saldo_tuples[0][1] == saldo_ids[0][1]):
                    saldo_ids = [saldo_tuples[0]]
                    del saldo_tuples[0]

                saldo_ids = [i[0] for i in saldo_ids]

        else:  # No WSD
            saldo_ids = token_sense.strip(util.AFFIX).split(util.DELIM) \
                if token_sense != util.AFFIX else None

        result = annotate(saldo_ids, lexicon, connect_ids, scoresep)
        out_annotation[token_index] = util.cwbset(result, delimiter, affix) if result else affix
    out.write(out_annotation)
Example #10
0
def annotate(token: Annotation = Annotation("<token>"),
             word: Annotation = Annotation("<token:word>"),
             sentence: Annotation = Annotation("<sentence>"),
             reference: Annotation = Annotation(
                 "<token>:misc.number_rel_<sentence>"),
             out_sense: Output = Output("<token>:saldo.sense",
                                        cls="token:sense",
                                        description="SALDO identifier"),
             out_lemgram: Output = Output("<token>:saldo.lemgram",
                                          description="SALDO lemgram"),
             out_baseform: Output = Output("<token>:saldo.baseform",
                                           cls="token:baseform",
                                           description="Baseform from SALDO"),
             models: List[Model] = [Model("[saldo.model]")],
             msd: Optional[Annotation] = Annotation("<token:msd>"),
             delimiter: str = util.DELIM,
             affix: str = util.AFFIX,
             precision: str = Config("saldo.precision"),
             precision_filter: str = "max",
             min_precision: float = 0.66,
             skip_multiword: bool = False,
             allow_multiword_overlap: bool = False,
             word_separator: str = "",
             lexicons=None):
    """Use the Saldo lexicon model (and optionally other older lexicons) to annotate pos-tagged words.

    - token, word, msd, sentence, reference: existing annotations
    - out_baseform, out_lemgram, out_sense: resulting annotations to be written
    - models: a list of pickled lexica, typically the Saldo model (saldo.pickle)
      and optional lexicons for older Swedish.
    - delimiter: delimiter character to put between ambiguous results
    - affix: an optional character to put before and after results
    - precision: a format string for how to print the precision for each annotation, e.g. ":%.3f"
      (use empty string for no precision)
    - precision_filter: an optional filter, currently there are the following values:
        max: only use the annotations that are most probable
        first: only use the most probable annotation (or one of the most probable if more than one)
        none: use all annotations
    - min_precision: only use annotations with a probability score higher than this
    - skip_multiword: set to True to disable multi word annotations
    - allow_multiword_overlap: by default we do some cleanup among overlapping multi word annotations.
      By setting this to True, all overlaps will be allowed.
    - word_separator: an optional character used to split the values of "word" into several word variations
    - lexicons: this argument cannot be set from the command line, but is used in the catapult.
      This argument must be last.
    """
    # Allow use of multiple lexicons
    models_list = [(m.path.stem, m) for m in models]
    if not lexicons:
        lexicon_list = [(name, SaldoLexicon(lex.path))
                        for name, lex in models_list]
    # Use pre-loaded lexicons (from catapult)
    else:
        lexicon_list = []
        for name, _lex in models_list:
            assert lexicons.get(
                name, None) is not None, "Lexicon %s not found!" % name
            lexicon_list.append((name, lexicons[name]))

    # Maximum number of gaps in multi-word units.
    # TODO: Set to 0 for hist-mode? since many (most?) multi-word in the old lexicons are inseparable (half öre etc)
    max_gaps = 1

    # Combine annotation names i SALDO lexicon with out annotations
    annotations = []
    if out_baseform:
        annotations.append((out_baseform, "gf"))
    if out_lemgram:
        annotations.append((out_lemgram, "lem"))
    if out_sense:
        annotations.append((out_sense, "saldo"))

    if skip_multiword:
        log.info("Skipping multi word annotations")

    min_precision = float(min_precision)

    # If min_precision is 0, skip almost all part-of-speech checking (verb multi-word expressions still won't be
    # allowed to span over other verbs)
    skip_pos_check = (min_precision == 0.0)

    word_annotation = list(word.read())
    ref_annotation = list(reference.read())
    if msd:
        msd_annotation = list(msd.read())

    sentences, orphans = sentence.get_children(token)
    sentences.append(orphans)

    out_annotation = word.create_empty_attribute()

    for sent in sentences:
        incomplete_multis = [
        ]  # [{annotation, words, [ref], is_particle, lastwordWasGap, numberofgaps}]
        complete_multis = []  # ([ref], annotation)
        sentence_tokens = {}

        for token_index in sent:
            theword = word_annotation[token_index]
            ref = ref_annotation[token_index]
            msdtag = msd_annotation[token_index] if msd else ""

            annotation_info = {}
            sentence_tokens[ref] = {
                "token_index": token_index,
                "annotations": annotation_info
            }

            # Support for multiple values of word
            if word_separator:
                thewords = [w for w in theword.split(word_separator) if w]
            else:
                thewords = [theword]

            # First use MSD tags to find the most probable single word annotations
            ann_tags_words = find_single_word(thewords, lexicon_list, msdtag,
                                              precision, min_precision,
                                              precision_filter,
                                              annotation_info)

            # Find multi-word expressions
            if not skip_multiword:
                find_multiword_expressions(incomplete_multis, complete_multis,
                                           thewords, ref, msdtag, max_gaps,
                                           ann_tags_words, msd_annotation,
                                           sent, skip_pos_check)

            # Loop to next token

        if not allow_multiword_overlap:
            # Check that we don't have any unwanted overlaps
            remove_unwanted_overlaps(complete_multis)

        # Then save the rest of the multi word expressions in sentence_tokens
        save_multiwords(complete_multis, sentence_tokens)

        for tok in list(sentence_tokens.values()):
            out_annotation[tok["token_index"]] = _join_annotation(
                tok["annotations"], delimiter, affix)

        # Loop to next sentence

    for out_annotation_obj, annotation_name in annotations:
        out_annotation_obj.write(
            [v.get(annotation_name, delimiter) for v in out_annotation])
Example #11
0
def _formatter(in_from: Annotation, in_to: Optional[Annotation],
               out_from: Output, out_to: Output, informat: str, outformat: str,
               splitter: str, regex: str):
    """Take existing dates/times and input formats and convert to specified output format."""
    def get_smallest_unit(informat):
        smallest_unit = 0  # No date

        if "%y" not in informat and "%Y" not in informat:
            pass
        elif "%b" not in informat and "%B" not in informat and "%m" not in informat:
            smallest_unit = 1  # year
        elif "%d" not in informat:
            smallest_unit = 2  # month
        elif "%H" not in informat and "%I" not in informat:
            smallest_unit = 3  # day
        elif "%M" not in informat:
            smallest_unit = 4  # hour
        elif "%S" not in informat:
            smallest_unit = 5  # minute
        else:
            smallest_unit = 6  # second

        return smallest_unit

    def get_date_length(informat):
        parts = informat.split("%")
        length = len(
            parts[0])  # First value is either blank or not part of date

        lengths = {
            "Y": 4,
            "3Y": 3,
            "y": 2,
            "m": 2,
            "b": None,
            "B": None,
            "d": 2,
            "H": None,
            "I": None,
            "M": 2,
            "S": 2
        }

        for part in parts[1:]:
            add = lengths.get(part[0], None)
            if add:
                length += add + len(part[1:])
            else:
                return None

        return length

    if not in_to:
        in_to = in_from

    informat = informat.split("|")
    outformat = outformat.split("|")
    if splitter:
        splitter = splitter

    assert len(outformat) == 1 or (len(outformat) == len(informat)), "The number of out-formats must be equal to one " \
                                                                     "or the number of in-formats."

    ifrom = list(in_from.read())
    ofrom = in_from.create_empty_attribute()

    for index, val in enumerate(ifrom):
        val = val.strip()
        if not val:
            ofrom[index] = None
            continue

        tries = 0
        for inf in informat:
            if splitter and splitter in inf:
                values = re.findall("%[YybBmdHMS]", inf)
                if len(set(values)) < len(values):
                    vals = val.split(splitter)
                    inf = inf.split(splitter)
            else:
                vals = [val]
                inf = [inf]

            if regex:
                temp = []
                for v in vals:
                    matches = re.search(regex, v)
                    if matches:
                        temp.append([x for x in matches.groups() if x][0])
                if not temp:
                    # If the regex doesn't match, treat as no date
                    ofrom[index] = None
                    continue
                vals = temp

            tries += 1
            try:
                fromdates = []
                for i, v in enumerate(vals):
                    if "%3Y" in inf[i]:
                        datelen = get_date_length(inf[i])
                        if datelen and not datelen == len(v):
                            raise ValueError
                        inf[i] = inf[i].replace("%3Y", "%Y")
                        v = "0" + v
                    if "%0m" in inf[i] or "%0d" in inf[i]:
                        inf[i] = inf[i].replace("%0m",
                                                "%m").replace("%0d", "%d")
                        datelen = get_date_length(inf[i])
                        if datelen and not datelen == len(v):
                            raise ValueError
                    fromdates.append(datetime.datetime.strptime(v, inf[i]))
                if len(fromdates) == 1 or out_to:
                    ofrom[index] = fromdates[0].strftime(outformat[0] if len(
                        outformat) == 1 else outformat[tries - 1])
                else:
                    outstrings = [
                        fromdate.strftime(outformat[0] if len(outformat) ==
                                          1 else outformat[tries - 1])
                        for fromdate in fromdates
                    ]
                    ofrom[index] = outstrings[0] + splitter + outstrings[1]
                break
            except ValueError:
                if tries == len(informat):
                    log.error("Could not parse: %s", str(vals))
                    raise
                continue

    out_from.write(ofrom)
    del ofrom

    if out_to:
        ito = list(in_to.read())
        oto = in_to.create_empty_attribute()

        for index, val in enumerate(ito):
            if not val:
                oto[index] = None
                continue

            tries = 0
            for inf in informat:
                if splitter and splitter in inf:
                    values = re.findall("%[YybBmdHMS]", inf)
                    if len(set(values)) < len(values):
                        vals = val.split(splitter)
                        inf = inf.split(splitter)
                else:
                    vals = [val]
                    inf = [inf]

                if regex:
                    temp = []
                    for v in vals:
                        matches = re.search(regex, v)
                        if matches:
                            temp.append([x for x in matches.groups() if x][0])
                    if not temp:
                        # If the regex doesn't match, treat as no date
                        oto[index] = None
                        continue
                    vals = temp

                tries += 1
                try:
                    todates = []
                    for i, v in enumerate(vals):
                        if "%3Y" in inf[i]:
                            datelen = get_date_length(inf[i])
                            if datelen and not datelen == len(v):
                                raise ValueError
                            inf[i] = inf[i].replace("%3Y", "%Y")
                            v = "0" + v
                        if "%0m" in inf[i] or "%0d" in inf[i]:
                            inf[i] = inf[i].replace("%0m",
                                                    "%m").replace("%0d", "%d")
                            datelen = get_date_length(inf[i])
                            if datelen and not datelen == len(v):
                                raise ValueError
                        todates.append(datetime.datetime.strptime(v, inf[i]))
                    smallest_unit = get_smallest_unit(inf[0])
                    if smallest_unit == 1:
                        add = relativedelta(years=1)
                    elif smallest_unit == 2:
                        add = relativedelta(months=1)
                    elif smallest_unit == 3:
                        add = relativedelta(days=1)
                    elif smallest_unit == 4:
                        add = relativedelta(hours=1)
                    elif smallest_unit == 5:
                        add = relativedelta(minutes=1)
                    elif smallest_unit == 6:
                        add = relativedelta(seconds=1)

                    todates = [
                        todate + add - relativedelta(seconds=1)
                        for todate in todates
                    ]
                    oto[index] = todates[-1].strftime(outformat[0] if len(
                        outformat) == 1 else outformat[tries - 1])
                    break
                except ValueError:
                    if tries == len(informat):
                        log.error("Could not parse: %s", str(vals))
                        raise
                    continue

        out_to.write(oto)
Example #12
0
def annotate_text(out: Output, lexical_classes_token: Annotation, text: Annotation, token: Annotation,
                  saldoids, cutoff, types, delimiter, affix, freq_model, decimals):
    """
    Annotate text chuncs with lexical classes.

    - out: resulting annotation file
    - lexical_classes_token: existing annotation with lexical classes on token level.
    - text, token: existing annotations for the text-IDs and the tokens.
    - saldoids: existing annotation with saldoIDs, needed when types=True.
    - cutoff: value for limiting the resulting bring classes.
              The result will contain all words with the top x frequencies.
              Words with frequency = 1 will be removed from the result.
    - types: if True, count every class only once per saldo ID occurrence.
    - delimiter: delimiter character to put between ambiguous results.
    - affix: optional character to put before and after results to mark a set.
    - freq_model: pickled file with reference frequencies.
    - decimals: number of decimals to keep in output.
    """
    cutoff = int(cutoff)
    text_children, _orphans = text.get_children(token, preserve_parent_annotation_order=True)
    classes = list(lexical_classes_token.read())
    sense = list(saldoids.read()) if types else None

    if freq_model:
        freq_model = util.PickledLexicon(freq_model.path)

    out_annotation = text.create_empty_attribute()

    for text_index, words in enumerate(text_children):
        seen_types = set()
        class_freqs = defaultdict(int)

        for token_index in words:
            # Count only sense types
            if types:
                senses = str(sorted([s.split(util.SCORESEP)[0] for s in sense[token_index].strip(util.AFFIX).split(util.DELIM)]))
                if senses in seen_types:
                    continue
                else:
                    seen_types.add(senses)

            rogwords = classes[token_index].strip(util.AFFIX).split(util.DELIM) if classes[token_index] != util.AFFIX else []
            for w in rogwords:
                class_freqs[w] += 1

        if freq_model:
            for c in class_freqs:
                # Relative frequency
                rel = class_freqs[c] / len(words)
                # Calculate class dominance
                ref_freq = freq_model.lookup(c.replace("_", " "), 0)
                if not ref_freq:
                    log.error("Class '%s' is missing" % ref_freq)
                class_freqs[c] = (rel / ref_freq)

        # Sort words according to frequency/dominance
        ordered_words = sorted(class_freqs.items(), key=lambda x: x[1], reverse=True)
        if freq_model:
            # Remove words with dominance < 1
            ordered_words = [w for w in ordered_words if w[1] >= 1]
        else:
            # Remove words with frequency 1
            ordered_words = [w for w in ordered_words if w[1] > 1]

        if len(ordered_words) > cutoff:
            cutoff_freq = ordered_words[cutoff - 1][1]
            ordered_words = [w for w in ordered_words if w[1] >= cutoff_freq]

        # Join words and frequencies/dominances
        ordered_words = [util.SCORESEP.join([word, str(round(freq, decimals))]) for word, freq in ordered_words]
        out_annotation[text_index] = util.cwbset(ordered_words, delimiter, affix) if ordered_words else affix

    out.write(out_annotation)